JEE Main & Advanced Mathematics Definite Integration Question Bank Fundamental definite integration, Definite integration by substitution

  • question_answer
    \[\int_{0}^{\pi /4}{\frac{\sec x}{1+2{{\sin }^{2}}x}}\] is equal to                                 [MNR 1994]

    A)                 \[\frac{1}{3}\left[ \log (\sqrt{2}+1)+\frac{\pi }{2\sqrt{2}} \right]\]            

    B)                 \[\frac{1}{3}\left[ \log (\sqrt{2}+1)-\frac{\pi }{2\sqrt{2}} \right]\]

    C)                 \[3\left[ \log (\sqrt{2}+1)-\frac{\pi }{2\sqrt{2}} \right]\]

    D)                 \[3\left[ \log (\sqrt{2}+1)+\frac{\pi }{2\sqrt{2}} \right]\]

    Correct Answer: A

    Solution :

                Let \[I=\int_{0}^{\pi /4}{\frac{\cos x}{{{\cos }^{2}}x(1+2{{\sin }^{2}}x)}}\text{ }dx\]                             \[=\int_{0}^{\pi /4}{\frac{\cos x\,dx}{(1-{{\sin }^{2}}x)(1+2{{\sin }^{2}}x)}}\]                             \[=\frac{1}{3}\int_{0}^{1/\sqrt{2}}{\left( \frac{1}{1-{{t}^{2}}}+\frac{2}{1+2{{t}^{2}}} \right)}\,dt\]            By partial fractions, where \[t=\sin x\]                    \[=\frac{1}{3}\left[ \frac{1}{2.1}\log \frac{1+t}{1-t}+\frac{2}{\sqrt{2}}{{\tan }^{-1}}t\sqrt{2} \right]_{0}^{1/\sqrt{2}}\]                    \[=\frac{1}{3}\left[ \frac{1}{2}\log \frac{(\sqrt{2}+1)}{(\sqrt{2}-1)}+\sqrt{2}{{\tan }^{-1}}1 \right]\]                      \[=\frac{1}{3}\left[ \frac{1}{2}\log {{(\sqrt{2}+1)}^{2}}+\sqrt{2}.\frac{\pi }{4} \right]\]\[=\frac{1}{3}\left[ \log (\sqrt{2}+1)+\frac{\pi }{2\sqrt{2}} \right]\].


You need to login to perform this action.
You will be redirected in 3 sec spinner