JEE Main & Advanced Mathematics Binomial Theorem and Mathematical Induction Question Bank General term, Coefficient of any power of x, Independent term, Middle term and Greatest term and Greatest coefficient

  • question_answer
    If the coefficients of \[{{T}_{r}},\,{{T}_{r+1}},\,{{T}_{r+2}}\] terms of \[{{(1+x)}^{14}}\] are in A.P., then r = [Pb. CET 2002]

    A) 6

    B) 7

    C) 8

    D) 9

    Correct Answer: D

    Solution :

    \[{{T}_{r\,}}={{\,}^{14}}{{C}_{r-1}}\,{{x}^{r-1}}\,;\,\,{{T}_{r+1}}\,=\,{{\,}^{14}}{{C}_{r}}\,{{x}^{r}}\]; \[{{T}_{r+2}}={{\,}^{14}}{{C}_{r+1}}\,{{x}^{r+1}}\] By the given condition  \[2\,{{.}^{14}}{{C}_{r}}={{\,}^{14}}{{C}_{r-1}}+{{\,}^{14}}{{C}_{r+1}}\]   ?..(i) Þ  \[2\,.\frac{14!}{r!\,\,(14-r)!}\,=\,\frac{14!}{(r-1)!\,\,(15-r)!}+\frac{14!}{(r+1)!\,(13-r)!}\] Þ  \[\frac{2}{r.(r-1)!.(14-r).(13-r)!}\] =\[\frac{1}{(r-1)!.(15-r).(14-r).(13-r)!}\]+\[\frac{1}{(r+1)\,r(r-1)\,!\,(13-r)\,!}\] Þ \[\frac{2}{r(14-r)}=\frac{1}{(15-r)(14-r)}+\frac{1}{(r+1)r}\] Þ \[\frac{1}{r(14-r)}-\frac{1}{(15-r)(14-r)}=\frac{1}{(r+1)r}-\frac{1}{r(14-r)}\] Þ \[\frac{(15-r)-r}{r(15-r)(14-r)}=\frac{(14-r)-(r+1)}{(r+1)r(14-r)}\] Þ  \[\frac{15-2r}{15-r}=\frac{13-2r}{r+1}\] Þ  \[15r+15-2{{r}^{2}}-2r=195-30r-13r+2{{r}^{2}}\] Þ  \[4{{r}^{2}}-56r+180=0\,\,\Rightarrow \,{{r}^{2}}-14r+45=0\] Þ   \[(r-5)(r-9)=0\Rightarrow r=5,\,9\] But 5 is not given.  Hence r = 9. Trick: Put the value of r from options in equation (i), only  satisfy it.


You need to login to perform this action.
You will be redirected in 3 sec spinner