A) 4/3 sq. units done clear
B) 7/3 sq. units done clear
C) 7/6 sq. units done clear
D) None of these done clear
View Solution play_arrowA) 9/8 sq. units done clear
B) 3/8 sq. units done clear
C) 3/2 sq. units done clear
D) 9/4 sq. units done clear
View Solution play_arrowA) 1/5 sq. units done clear
B) 3/5 sq. units done clear
C) 4/5 sq. units done clear
D) 8/4 sq. units done clear
View Solution play_arrowA) \[\frac{\pi }{2}-1\] sq. units done clear
B) \[2\pi \]sq. units done clear
C) \[4\pi \]sq. units done clear
D) \[\pi /2\]sq. units done clear
View Solution play_arrowquestion_answer5) The area of the loop of the curve \[a{{y}^{2}}={{x}^{2}}(a-x)\] is
A) \[4{{a}^{2}}\]sq. units done clear
B) \[\frac{8{{a}^{2}}}{15}\]sq. units done clear
C) \[\frac{16{{a}^{2}}}{9}\]sq. units done clear
D) None of these done clear
View Solution play_arrowA) 7 sq. units done clear
B) 6 sq. units done clear
C) 9 sq. units done clear
D) None of these done clear
View Solution play_arrowA) \[\frac{{{\pi }^{2}}-8}{{{\pi }^{2}}+8}\] done clear
B) \[\frac{{{\pi }^{2}}-4}{{{\pi }^{2}}+4}\] done clear
C) \[\frac{\pi -4}{\pi -4}\] done clear
D) \[\frac{2{{\pi }^{2}}}{2\pi +{{\pi }^{2}}-8}\] done clear
View Solution play_arrowA) 1/4 sq. units done clear
B) 4/3 sq. units done clear
C) 5/4 sq. units done clear
D) 7/3 sq. units done clear
View Solution play_arrowA) \[\sqrt{x-1}\] done clear
B) \[\sqrt{x+1}\] done clear
C) \[\sqrt{{{x}^{2}}+1}\] done clear
D) \[\frac{x}{\sqrt{1+{{x}^{2}}}}\] done clear
View Solution play_arrowA) \[\pi {{a}^{2}}\]sq. units done clear
B) \[\frac{3\pi \,{{a}^{2}}}{2}\] sq. units done clear
C) \[2\pi \,{{a}^{2}}\]sq. units done clear
D) \[3\pi \,{{a}^{2}}\] sq. units done clear
View Solution play_arrowA) 8/3 sq. units done clear
B) 10/3 sq. units done clear
C) 11/3 sq. units done clear
D) 11/4 sq. units done clear
View Solution play_arrowA) 0 done clear
B) 1/3 done clear
C) 2/3 done clear
D) None of these done clear
View Solution play_arrowA) 2 done clear
B) 3 done clear
C) 4 done clear
D) 5 done clear
View Solution play_arrowquestion_answer14) The area bounded by the curves \[x={{y}^{2}}\] and \[x=\frac{2}{1+{{y}^{2}}}\] is
A) \[\pi -\frac{2}{3}\] done clear
B) \[\pi +\frac{2}{3}\] done clear
C) \[-\pi -\frac{2}{3}\] done clear
D) none of these done clear
View Solution play_arrowA)1 done clear
B)2 done clear
C)\[\pi \] done clear
D)2\[\pi \] done clear
View Solution play_arrowA) 2/3 sq. units done clear
B) 8/3 sq. units done clear
C) 11/3 sq. units done clear
D) 13/6 sq. units done clear
View Solution play_arrowA) \[4(\sqrt{2}-1)\] done clear
B) \[2\sqrt{2}(\sqrt{2}-1)\] done clear
C) \[2(\sqrt{2}+1)\] done clear
D) \[2\sqrt{2}(\sqrt{2}+1)\] done clear
View Solution play_arrowA) \[\frac{{{\pi }^{5}}}{32}-\frac{{{\pi }^{4}}}{64}+\frac{{{\pi }^{3}}}{32}+1\] done clear
B) \[\frac{{{\pi }^{5}}}{16}-\frac{{{\pi }^{4}}}{32}+\frac{{{\pi }^{3}}}{24}-1\] done clear
C) \[\frac{{{\pi }^{5}}}{32}-\frac{{{\pi }^{4}}}{32}+\frac{{{\pi }^{3}}}{16}\] done clear
D) \[\frac{{{\pi }^{5}}}{32}-\frac{{{\pi }^{4}}}{32}+\frac{{{\pi }^{3}}}{24}+1\] done clear
View Solution play_arrowA) \[1/\sqrt{3}\] done clear
B) 1/2 done clear
C) 1 done clear
D) 1/3 done clear
View Solution play_arrowquestion_answer20) The area bounded by the curve \[{{y}^{2}}(2-x)={{x}^{3}}\] and x = 2 is
A) \[\frac{\pi }{2}\] done clear
B) \[\pi \] done clear
C) \[2\pi \] done clear
D) \[3\pi \] done clear
View Solution play_arrowYou need to login to perform this action.
You will be redirected in
3 sec