question_answer1) If \[X=\{{{8}^{n}}-7n-1:n\in N\}\] and \[Y=\{49(n-1):n\in N\},\] then
A) \[X\subseteq Y\] done clear
B) \[Y\subseteq X\] done clear
C) \[X=Y\] done clear
D) None of these done clear
View Solution play_arrowquestion_answer2) If \[{{N}_{a}}=\{an:n\in N\},\] then \[{{N}_{3}}\cap {{N}_{4}}=\]
A) \[{{N}_{7}}\] done clear
B) \[{{N}_{12}}\] done clear
C) \[{{N}_{3}}\] done clear
D) \[{{N}_{4}}\] done clear
View Solution play_arrowA) 3 done clear
B) 6 done clear
C) 9 done clear
D) 18 done clear
View Solution play_arrowA) One point done clear
B) Three points done clear
C) Two points done clear
D) Four points done clear
View Solution play_arrowA) \[\bar{A}\cap B\] done clear
B) \[A\cap \bar{B}\] done clear
C) \[\bar{A}\cap \bar{B}\] done clear
D) \[\overline{A\cap B}\] done clear
View Solution play_arrowA) {(2, 4), (3, 4)} done clear
B) {(4, 2), (4, 3)} done clear
C) {(2, 4), (3, 4), (4, 4)} done clear
D) {(2,2), (3,3), (4,4), (5,5)} done clear
View Solution play_arrowA) At least 30 done clear
B) At most 20 done clear
C) Exactly 25 done clear
D) None of these done clear
View Solution play_arrowA) 18 done clear
B) 6 done clear
C) 4 done clear
D) 0 done clear
View Solution play_arrowA) {(1,2), (3,1), (1,3), (1,5)} done clear
B) {(1, 2), (3, 1), (2, 1)} done clear
C) {(1, 2), (5, 1), (3, 1)} done clear
D) None of these done clear
View Solution play_arrowA) Reflexive and Symmetric done clear
B) Symmetric only done clear
C) Transitive only done clear
D) Anti-symmetric only done clear
View Solution play_arrowA) Symmetric only done clear
B) Equivalence relation done clear
C) Reflexive only done clear
D) None of these done clear
View Solution play_arrowA) Reflexive and symmetric done clear
B) Transitive and symmetric done clear
C) Equivalence done clear
D) Reflexive, transitive but not symmetric done clear
View Solution play_arrowA) R and S are transitive \[\Rightarrow \text{ }R\text{ }\cup \text{ }S\] is transitive done clear
B) R and S are transitive \[\Rightarrow \text{ }R\text{ }\cap \text{ }S\] is transitive done clear
C) R and S are symmetric \[\Rightarrow \text{ }R\text{ }\cup \text{ }S\] is symmetric done clear
D) R and S are reflexive \[\Rightarrow \text{ }R\text{ }\cap \text{ }S\] is reflexive done clear
View Solution play_arrowA) {(1, 1), (4, 4), (4, 7), (7, 4), (7, 7), (3, 3)} done clear
B) {(1, 1), (4, 4), (7, 7), (3, 3)} done clear
C) {(1, 5), (1, 6), (3, 6)} done clear
D) None of these done clear
View Solution play_arrowA) Reflexive done clear
B) Symmetric done clear
C) Transitive done clear
D) None of these done clear
View Solution play_arrowYou need to login to perform this action.
You will be redirected in
3 sec