JEE Main & Advanced Mathematics Applications of Derivatives Question Bank Maxima and Minima

  • question_answer
    \[{{x}^{x}}\] has a stationary point at                                                                      [Karnataka CET 1993]

    A)            \[x=e\]

    B)            \[x=\frac{1}{e}\]

    C)            \[x=1\]

    D)            \[x=\sqrt{e}\]

    Correct Answer: B

    Solution :

               Let \[y={{x}^{x}}\]Þ \[\log y=x.\log x,\ \ \ \ (x>0)\]            Differentiating \[\frac{dy}{dx}={{x}^{x}}(1+\log x)\]; \[\therefore \frac{dy}{dx}=0\]            Þ \[\log x=-1\]Þ\[x={{e}^{-1}}=\frac{1}{e}\]            \[\therefore \]Stationary point is \[x=\frac{1}{e}\]            \[\frac{{{d}^{2}}y}{d{{x}^{2}}}={{x}^{x}}{{(1+\log x)}^{2}}+{{x}^{x}}.\frac{1}{x}\]            When \[x=\frac{1}{e},\ \ \frac{{{d}^{2}}y}{d{{x}^{2}}}={{\left( \frac{1}{e} \right)}^{(1/e)-1}}>0\]            Therefore y is minimum at \[x=\frac{1}{e}\]and minimum value \[={{\left( \frac{1}{e} \right)}^{1/e}}={{e}^{-1/e}}\].


You need to login to perform this action.
You will be redirected in 3 sec spinner