A) \[a=\frac{8}{3},\,b=\frac{2}{3}\]
B) \[a=\frac{7}{3},\,b=0\]
C) \[a=\frac{1}{3},\,b=1\]
D) \[a=\frac{2}{3},\,b=\frac{1}{3}\]
Correct Answer: B
Solution :
[b] Let the line segment joining the point \[A(3,-4)\] and \[B(1,2)\]be trisected by points \[P(a,-2)\] and \[Q\left( \frac{5}{3},b \right)\] |
Then, \[AP=PQ=QB\] |
\[\therefore \] P divides AB in the ratio \[1:2\] |
So, coordinates of P are |
\[\left( \frac{2(3)+1(1)}{1+2},\frac{2(-4)+1(2)}{1+2} \right)\] |
i.e., \[\left( \frac{7}{3},-2 \right)\Rightarrow \left( \frac{7}{3},-2 \right)=(a,-2)\] |
[\[P=(a,-2)\] (Given)] |
\[\Rightarrow \,\,\,\,\,\,\,\,\,\,\,\,\,a=\frac{7}{3}\] |
Also, Q divides AB in the ratio \[2:1\] |
So, coordinates of Q are |
\[\left( \frac{1(3)+2(1)}{1+2},\frac{1(-4)+2(2)}{1+2} \right)\] |
i.e.,\[\left( \frac{5}{3},0 \right)\] |
\[\Rightarrow \,\,\,\,\left( \frac{5}{3},0 \right)=\left( \frac{5}{3},b \right)\] |
\[\left[ Q=\left( \frac{5}{3},b \right)(Given) \right]\Rightarrow b=0\] |
You need to login to perform this action.
You will be redirected in
3 sec