10th Class Mathematics Introduction to Trigonometry Question Bank MCQs - Introduction to Trigonometry

  • question_answer
    In \[\Delta OPQ\] right-angled at P, \[OP=7cm,\]and \[OQ-PQ=1cm,\]then the value of \[\sin Q\] is: (NCERT Exercise)

    A) \[\frac{3}{25}\]

    B) \[\frac{1}{5}\]

    C) \[\frac{7}{25}\]

    D) \[\frac{9}{25}\]

    Correct Answer: C

    Solution :

    [c] Given, \[\angle P=90{}^\circ \]and \[OP=7\,cm\]
    Also,\[OQ-PQ=1cm\]….(1)
    In \[\Delta OPQ,\]
    \[O{{Q}^{2}}=O{{P}^{2}}+P{{Q}^{2}}\]
    \[\Rightarrow \,\,\,\,O{{P}^{2}}=O{{Q}^{2}}-P{{Q}^{2}}\]
    \[\Rightarrow \,\,\,\,{{(7)}^{2}}=(OQ+PQ)\,\,(OQ-PQ)\]
    \[[{{a}^{2}}-{{b}^{2}}=(a+b)\,\,(a-b)]\]
    \[\Rightarrow \,\,\,\,49=(OQ+PQ)\cdot 1\][from eq. (1)]
    \[\Rightarrow \,\,\,\,OQ+PQ=49\]…..(2)
    From eqs. (1) and (2), we get
    \[2OQ=50\,\,\,\,\,\,\,\Rightarrow \,OQ=25cm\]
    and \[PQ=49-25=24cm\]
    So,\[\sin Q=\frac{OP}{OQ}=\frac{7}{25}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner