A) \[\frac{3}{25}\]
B) \[\frac{1}{5}\]
C) \[\frac{7}{25}\]
D) \[\frac{9}{25}\]
Correct Answer: C
Solution :
[c] Given, \[\angle P=90{}^\circ \]and \[OP=7\,cm\] |
Also,\[OQ-PQ=1cm\] .(1) |
In \[\Delta OPQ,\] |
\[O{{Q}^{2}}=O{{P}^{2}}+P{{Q}^{2}}\] |
\[\Rightarrow \,\,\,\,O{{P}^{2}}=O{{Q}^{2}}-P{{Q}^{2}}\] |
\[\Rightarrow \,\,\,\,{{(7)}^{2}}=(OQ+PQ)\,\,(OQ-PQ)\] |
\[[{{a}^{2}}-{{b}^{2}}=(a+b)\,\,(a-b)]\] |
\[\Rightarrow \,\,\,\,49=(OQ+PQ)\cdot 1\][from eq. (1)] |
\[\Rightarrow \,\,\,\,OQ+PQ=49\] ..(2) |
From eqs. (1) and (2), we get |
\[2OQ=50\,\,\,\,\,\,\,\Rightarrow \,OQ=25cm\] |
and \[PQ=49-25=24cm\] |
So,\[\sin Q=\frac{OP}{OQ}=\frac{7}{25}\] |
You need to login to perform this action.
You will be redirected in
3 sec