A) \[1\]
B) \[-1\]
C) \[2\]
D) \[3\]
Correct Answer: C
Solution :
[c]\[\frac{{{\tan }^{3}}\theta -1}{\tan \theta -1}=\frac{(\tan \theta -1)({{\tan }^{2}}\theta +1+\tan \theta )}{(\tan \theta -1)}\] |
\[={{\sec }^{2}}\theta +\tan \theta \]\[[1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta ]\] |
\[=A{{\sec }^{2}}\theta +B\tan \theta \] |
On comparing, we get |
\[A=1\] and \[B=1\] |
\[\therefore \,\,\,\,\,\,\,\,\,\,A+B=1+1=2\] |
You need to login to perform this action.
You will be redirected in
3 sec