A) \[\frac{7}{24}\]
B) \[\frac{24}{7}\]
C) \[\frac{24}{25}\]
D) \[\frac{25}{24}\]
Correct Answer: C
Solution :
[c] Let ABC be the right angle triangle such that |
\[\angle B=90{}^\circ \] and \[\angle A=\theta \] |
\[\therefore \,\,\sec \theta =\frac{AC}{AB}=\frac{25}{7}\] |
Let \[AC=25k\] and \[AB=7k,\] |
where k is positive constant. |
\[\therefore \,\,\,\,\,B{{C}^{2}}=(A{{C}^{2}}-A{{B}^{2}})={{(25k)}^{2}}-{{(7k)}^{2}}\] |
\[=(625{{k}^{2}}-49{{k}^{2}})=576{{k}^{2}}\] |
\[\Rightarrow \,\,BC=24k\] |
\[\therefore \,\,\,\,\sin \theta =\frac{BC}{AC}=\frac{24k}{25k}=\frac{24}{25}\] |
You need to login to perform this action.
You will be redirected in
3 sec