10th Class Mathematics Introduction to Trigonometry Question Bank MCQs - Introduction to Trigonometry

  • question_answer
    If \[\sin \theta -\cos \theta =0,\]then the value of \[{{\sin }^{4}}\theta +{{\cos }^{4}}\theta \]is:(CBSE 2017)

    A) \[0\]

    B) \[1\]

    C) \[\frac{1}{2}\]

    D) \[-\frac{1}{2}\]

    Correct Answer: C

    Solution :

    [c] Given, \[\sin \theta -\cos \theta =0\]
    \[\Rightarrow \,\,\,\,\,\,\,\,\,\sin \theta =\cos \theta \]
    \[\Rightarrow \,\,\,\,\,\,\,\,\,\frac{\sin \theta }{\cos \theta }=1\,\,\,\,\,\,\,\,\,\,\,\,\Rightarrow \,\,\,\,\,\tan \theta =\tan 45{}^\circ \]
    \[\Rightarrow \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\theta =45{}^\circ \]
    \[\therefore \,\,\,\,\,\,\,\,\,{{\sin }^{4}}\theta +{{\cos }^{4}}\theta ={{\sin }^{4}}45{}^\circ +{{\cos }^{4}}45{}^\circ \]
    \[={{\left( \frac{1}{\sqrt{2}} \right)}^{4}}+{{\left( \frac{1}{\sqrt{2}} \right)}^{4}}\]
    \[=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\]
    [\[\tan 45{}^\circ =1\] and \[\sin 45{}^\circ =\cos 45{}^\circ =1/\sqrt{2}\]]


You need to login to perform this action.
You will be redirected in 3 sec spinner