10th Class Mathematics Introduction to Trigonometry Question Bank MCQs - Introduction to Trigonometry

  • question_answer
    \[2({{\sin }^{6}}\theta +{{\cos }^{6}}\theta )-3({{\sin }^{4}}\theta +{{\cos }^{4}}\theta )\]is equal to:

    A) \[0\]

    B) \[1\]

    C) \[-1\]

    D) None of these

    Correct Answer: C

    Solution :

    [c] We have,
    \[2({{\sin }^{6}}\theta +{{\cos }^{6}}\theta )-3({{\sin }^{4}}\theta +{{\cos }^{4}}\theta )\]
    \[=2({{\sin }^{6}}\theta +{{\cos }^{6}}\theta -{{\sin }^{4}}\theta -{{\cos }^{4}}\theta )-({{\sin }^{4}}\theta +{{\cos }^{4}}\theta )\]\[=2{{\sin }^{4}}\theta ({{\sin }^{2}}\theta -1)+2{{\cos }^{4}}\theta ({{\cos }^{2}}\theta -1)-({{\sin }^{4}}\theta +{{\cos }^{4}}\theta )\]\[=-2{{\sin }^{4}}\theta {{\cos }^{2}}\theta -2{{\cos }^{4}}\theta {{\sin }^{2}}\theta -({{\sin }^{4}}\theta +{{\cos }^{4}}\theta )\]\[[{{\sin }^{2}}\theta -1=-{{\cos }^{2}}\theta ,{{\cos }^{2}}\theta -1=-{{\sin }^{2}}\theta ]\]
    \[=-2{{\sin }^{2}}\theta {{\cos }^{2}}\theta ({{\sin }^{2}}\theta +{{\cos }^{2}}\theta )-({{\sin }^{4}}\theta +{{\cos }^{4}}\theta )\]\[=-(2{{\sin }^{2}}\theta {{\cos }^{2}}\theta +{{\sin }^{4}}\theta +{{\cos }^{4}}\theta )\]
    \[=-{{({{\sin }^{2}}\theta +{{\cos }^{2}}\theta )}^{2}}=-{{(1)}^{2}}=-1\]


You need to login to perform this action.
You will be redirected in 3 sec spinner