6th Class
Mathematics
Mensuration
Question Bank
Mensuration Basics
question_answer
In the given figure, O is the center of the circle and AB is the diameter of the circle of length 14 cm. Find the area of shaded portion.
A)\[38.5\,\,c{{m}^{2}}\]
B)\[9.625\,\,c{{m}^{2}}\]
C)\[19.25\,\,c{{m}^{2}}\]
D) None of these
Correct Answer:
C
Solution :
\[AB=14\,\,cm\] \[\therefore \]\[AO=OB=7\,\,cm\] \[\therefore \]\[OP=7\,\,cm\] Again, In small circle Radius \[=\frac{7}{2}cm\] \[\therefore \]Area of Semicircle \[PQO=\frac{1}{2}\times \frac{22}{7}\times \frac{7}{2}\times \frac{7}{2}=\frac{77}{4}c{{m}^{2}}\] Now. Area of sector \[=\frac{\theta }{360{}^\circ }\pi {{r}^{2}}=\frac{90{}^\circ }{360}\times \frac{22}{7}\times 7\times 7=\frac{154}{4}c{{m}^{2}}\] Area of shaded portion \[=\frac{154}{4}-\frac{77}{4}=\frac{77}{4}=19\frac{1}{4}=19.25c{{m}^{2}}\]