JEE Main & Advanced Mathematics Determinants & Matrices Question Bank Mock Test - Determinants

  • question_answer
    In triangle ABC, if \[\left| \begin{matrix}    1 & 1 & 1  \\    \cos \frac{A}{2} & \cot \frac{A}{2} & \cot \frac{C}{2}  \\    \tan \frac{B}{2}+\tan \frac{C}{2} & \tan \frac{C}{2}+\tan \frac{A}{2} & \tan \frac{A}{2}+\tan \frac{B}{2}  \\ \end{matrix} \right|=0\] then the triangle must be

    A)  equilateral

    B)  isosceles

    C)  obtuse angled

    D)  none of these

    Correct Answer: B

    Solution :

    [b] Applying \[{{C}_{1}}\to {{C}_{1}}-{{C}_{2}},{{C}_{2}}\to {{C}_{2}}-{{C}_{3}}\], we get\[\Delta =\left| \begin{matrix}    0 & 0 & 1  \\    \cot \frac{A}{2}-\cot \frac{B}{2} & \cot \frac{B}{2}-\cot \frac{C}{2} & \cot \frac{C}{2}  \\    \tan \frac{B}{2}-\tan \frac{A}{2} & \tan \frac{C}{2}-\tan \frac{B}{2} & \tan \frac{A}{2}+\tan \frac{B}{2}  \\ \end{matrix} \right|\] \[\Delta =\left| \begin{matrix}    0 & 0 & 1  \\    \cot \frac{A}{2}-\cot \frac{B}{2} & \cot \frac{B}{2}-\cot \frac{C}{2} & \cot \frac{C}{2}  \\    \frac{\cot \frac{A}{2}-\cot \frac{B}{2}}{\cot \frac{A}{2}\cot \frac{B}{2}} & \frac{\cot \frac{B}{2}-\cot \frac{C}{2}}{\cot \frac{B}{2}\cot \frac{C}{2}} & \tan \frac{A}{2}+\tan \frac{B}{2}  \\ \end{matrix} \right|\] \[=\left( \cot \frac{A}{2}-\cot \frac{B}{2} \right)\left( \cot \frac{B}{2}-\cot \frac{C}{2} \right)\] \[\times \left| \begin{matrix}    0 & 0 & 1  \\    1 & 1 & \cot \frac{C}{2}  \\    \tan \frac{A}{2}\tan \frac{B}{2} & \tan \frac{B}{2}\tan \frac{C}{2} & \tan \frac{A}{2}\tan \frac{B}{2}  \\ \end{matrix} \right|\]\[=\left( \cot \frac{A}{2}-\cot \frac{B}{2} \right)\left( \cot \frac{B}{2}-\cot \frac{C}{2} \right)\] \[\left( \tan \frac{C}{2}-\tan \frac{A}{2} \right)\tan \frac{B}{2}\] Since\[\Delta =0\], we have \[\cot \frac{A}{2}=\cot \frac{B}{2}\] Or  \[\cot \frac{B}{2}=\cot \frac{C}{2}\] \[\tan \frac{A}{2}=\tan \frac{C}{2}\] Hence, the triangle is definitely isosceles.


You need to login to perform this action.
You will be redirected in 3 sec spinner