JEE Main & Advanced Mathematics Binomial Theorem and Mathematical Induction Question Bank Properties of binomial coefficients

  • question_answer
    If \[{{S}_{n}}=\sum\limits_{r=0}^{n}{\frac{1}{^{n}{{C}_{r}}}}\] and \[{{t}_{n}}=\sum\limits_{r=0}^{n}{\frac{r}{^{n}{{C}_{r}}}}\], then \[\frac{{{t}_{n}}}{{{S}_{n}}}\] is equal to [AIEEE 2004]

    A) \[\frac{2n-1}{2}\]

    B) \[\frac{1}{2}n-1\]

    C) \[n-1\]

    D) \[\frac{1}{2}n\]

    Correct Answer: D

    Solution :

    We have, \[{{S}_{n}}=\sum\limits_{r=0}^{n}{\frac{1}{^{n}{{C}_{r}}}}\] and \[{{t}_{n}}=\sum\limits_{r=0}^{n}{\frac{r}{^{n}{{C}_{r}}}}\] \[{{t}_{n}}=\sum\limits_{r=0}^{n}{\frac{n-(n-r)}{^{n}{{C}_{n-r}}}}\], \[[\because \,{{\,}^{n}}{{C}_{r}}={{\,}^{n}}{{C}_{n-r}}]\]   = \[n\sum\limits_{r=0}^{n}{\frac{1}{^{n}{{C}_{r}}}}-\sum\limits_{r=0}^{n}{\frac{n-r}{^{n}{{C}_{n-r}}}}\] \[{{t}_{n}}=n\,.\,{{S}_{n}}-\left[ \frac{n}{^{n}{{C}_{n}}}+\frac{n-1}{^{n}{{C}_{n-1}}}+.....+\frac{1}{^{n}{{C}_{1}}}+0 \right]\] \[{{t}_{n}}=n\,.\,{{S}_{n}}-\sum\limits_{r=0}^{n}{\frac{r}{^{n}{{C}_{r}}}}\] \[\Rightarrow \]  \[{{t}_{n}}=n\,.\,{{S}_{n}}-{{t}_{n}}\]  \[\Rightarrow \] \[2{{t}_{n}}={{\,}^{n}}{{S}_{n}}\Rightarrow \frac{{{t}_{n}}}{{{S}_{n}}}=\frac{n}{2}\].


You need to login to perform this action.
You will be redirected in 3 sec spinner