JEE Main & Advanced Mathematics Conic Sections Question Bank Self Evaluation Test - Conic Sections

  • question_answer
    If the circle \[{{x}^{2}}+{{y}^{2}}={{a}^{2}}\] intersects the hyperbola \[xy={{c}^{2}}\] in four points \[P({{x}_{1}},{{y}_{1}}),Q({{x}_{2}},{{y}_{2}}),R({{x}_{3}},{{y}_{3}}),S({{x}_{4}},{{y}_{4}})\] Then

    A) \[{{x}_{1}}+{{x}_{2}}+{{x}_{3}}+{{x}_{4}}=0\]

    B) \[{{y}_{1}}+{{y}_{2}}+{{y}_{3}}+{{y}_{4}}=2\]

    C) \[{{x}_{1}}{{x}_{2}}{{x}_{3}}{{x}_{4}}=2{{c}^{4}}\]

    D) \[{{y}_{1}}{{y}_{2}}{{y}_{3}}{{y}_{4}}=2{{c}^{4}}\]

    Correct Answer: A

    Solution :

    [a] \[({{x}_{i}},{{y}_{i}}),\,\,i=1,\,\,2,\,\,3,\,\,4\] lies on
    \[xy={{c}^{2}}\Rightarrow {{y}_{i}}=\frac{{{c}^{2}}}{{{x}_{i}}}\]
    Now the point \[({{x}_{i}},{{y}_{i}})\] lies on
    \[{{x}^{2}}+{{y}^{2}}={{a}^{2}}\Rightarrow {{x}^{2}}_{i}+\frac{{{c}^{4}}}{{{x}_{i}}}={{a}^{2}}\]
    \[\Rightarrow {{x}^{4}}_{i}-{{a}^{2}}{{x}^{2}}_{i}+{{c}^{4}}=0\]
    Its roots are \[{{x}_{1}},{{x}_{2}},{{x}_{3}},{{x}_{4}}\therefore \]
    \[{{x}_{1}}+{{x}_{2}}+{{x}_{3}}+{{x}_{4}}=0\]
    \[{{x}_{1}}{{x}_{2}}+{{x}_{1}}{{x}_{3}}+{{x}_{1}}{{x}_{4}}+{{x}_{2}}{{x}_{3}}+{{x}_{2}}{{x}_{4}}+{{x}_{3}}{{x}_{4}}={{a}^{2}}\]
    \[{{x}_{1}}{{x}_{2}}{{x}_{3}}+{{x}_{1}}{{x}_{2}}{{x}_{4}}+{{x}_{1}}{{x}_{3}}{{x}_{4}}+{{x}_{2}}{{x}_{3}}{{x}_{4}}=0\]
    \[{{x}_{1}}{{x}_{2}}{{x}_{3}}{{x}_{4}}={{c}^{4}}\] Clearly [c] is not correct
    Now \[{{y}_{1}}{{y}_{2}}{{y}_{3}}{{y}_{4}}=\frac{{{c}^{2}}}{{{x}_{1}}}.\frac{{{c}^{2}}}{{{x}_{2}}}.\frac{{{c}^{2}}}{{{x}_{3}}}.\frac{{{c}^{2}}}{{{x}_{4}}}={{c}^{4}}\]
    and \[{{y}_{1}}+{{y}_{2}}+{{y}_{3}}+{{y}_{4}}=\frac{{{c}^{2}}(\Sigma {{x}_{1}}{{x}_{2}}{{x}_{3}})}{{{x}_{1}}{{x}_{2}}{{x}_{3}}{{x}_{4}}}=0\]


You need to login to perform this action.
You will be redirected in 3 sec spinner