JEE Main & Advanced Mathematics Conic Sections Question Bank Self Evaluation Test - Conic Sections

  • question_answer
    If AB is a double ordinate of the hyperbola \[\frac{{{x}^{2}}}{{{a}^{2}}}-\frac{{{y}^{2}}}{{{b}^{2}}}=1\] such that \[\Delta OAB\] is an equilateral triangle O being the origin, then the eccentricity of the hyperbola satisfies.

    A) \[e>\sqrt{3}\]

    B) \[1<e<\frac{2}{\sqrt{3}}\]

    C) \[e=\frac{2}{\sqrt{3}}\]

    D) \[e>\frac{2}{\sqrt{3}}\]

    Correct Answer: D

    Solution :

    [d] Let the length of the double ordinate be \[2\ell .\]
    \[\therefore \,\,\,\,AB=2\ell \] and \[AM=BM=\ell \]
    Clearly ordinate of point A is \[\ell \].
    The abscissa of the point A is given by
    \[\frac{{{x}^{2}}}{{{a}^{2}}}-\frac{{{\ell }^{2}}}{{{b}^{2}}}=1\Rightarrow x=\frac{a\sqrt{{{b}^{2}}+{{\ell }^{2}}}}{b}\]
    \[\therefore \] A is \[\left( \frac{a\sqrt{{{b}^{2}}+{{\ell }^{2}}}}{b},\ell  \right)\]
    Since \[\Delta OAB\] is equilateral triangle, therefore
    \[OA=AB=OB=2\ell .\]
    Also, \[O{{M}^{2}}+A{{M}^{2}}=O{{A}^{2}}\]
    \[\therefore \frac{{{a}^{2}}({{b}^{2}}+{{\ell }^{2}})}{{{b}^{2}}}+{{\ell }^{2}}=4{{\ell }^{2}}\]
    We get \[{{\ell }^{2}}=\frac{{{a}^{2}}{{b}^{2}}}{3{{b}^{2}}-{{a}^{2}}}\]
    Since \[{{\ell }^{2}}>0\therefore \frac{{{a}^{2}}{{b}^{2}}}{3{{b}^{2}}-{{a}^{2}}}>0\Rightarrow 3{{b}^{2}}-{{a}^{2}}>0\]
    \[\Rightarrow 3{{a}^{2}}({{e}^{2}}-1)-{{a}^{2}}>0\Rightarrow e>\frac{2}{\sqrt{3}}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner