JEE Main & Advanced Mathematics Determinants & Matrices Question Bank Self Evaluation Test - Determinats

  • question_answer
    Let \[\Delta =\] \[\left| \begin{matrix}    \sin x & \sin (x+h) & \sin (x+2h)  \\    \sin (x+2h) & \sin x & \sin (x+h)  \\    \sin (x+h) & \sin (x+2h) & \sin x  \\ \end{matrix} \right|\]Then, \[\underset{h\to 0}{\mathop{\lim }}\,\,\,\left( \frac{\Delta }{{{h}^{2}}} \right)\] is

    A) \[9si{{n}^{2}}x\cos x\]

    B) \[3{{\cos }^{2}}x\]

    C) \[\sin x{{\cos }^{2}}x\]

    D) None of these

    Correct Answer: B

    Solution :

    [b] Operating \[{{C}_{1}}\to {{C}_{1}}+{{C}_{2}}+{{C}_{3}}\] and taking out the common factor from \[{{C}_{1}},\] we have \[\Delta =\sin (x+h)(1+2cos\,h)\] \[\left| \begin{matrix}    1 & \sin (x+h) & \sin (x+2h)  \\    1 & \sin x & \sin (x+h)  \\    1 & \sin (x+2h) & \sin x  \\ \end{matrix} \right|\] \[\{Since,\,\,sin(x+h)+sin(x)+sin(x+2h)\]             \[=\sin (x+h)(1+2cosh)\}\] By operating \[{{R}_{2}}\to {{R}_{2}}-{{R}_{1}}\] and \[{{R}_{3}}\to {{R}_{3}}-{{R}_{1}}\], We have \[\Delta =\sin (x+h)(1+2\,cos\,h)\] \[\left| \begin{matrix}    1 & \sin (x+h) & \sin (x+2h)  \\    0 & \sin x-\sin (x+h) & \sin (x+h)-\sin (x+2h)  \\    0 & \sin (x+2h)-\sin (x+h) & \sin x-\sin (x+2h)  \\ \end{matrix} \right|\] \[=\left\{ \begin{align}   & \left( 2\cos \left( x+\frac{h}{2} \right)\sin +\frac{h}{2} \right)(2cos(x+h)sin\,h) \\  & +\left( 2\cos (x+\frac{3h}{2} \right)\operatorname{si}{{\left. n\frac{h}{2} \right)}^{2}} \\ \end{align} \right\}\] Therefore, \[\underset{h\to 0}{\mathop{\lim }}\,\frac{\Delta }{{{h}^{2}}}=3\,\,{{\cos }^{2}}x\].


You need to login to perform this action.
You will be redirected in 3 sec spinner