JEE Main & Advanced Mathematics Binomial Theorem and Mathematical Induction Question Bank Self Evaluation Test - Principle of Mathematical Induction

  • question_answer
    For all \[n\in N,\] \[1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+n}\] is equal to

    A) \[\frac{3n}{n+1}\]

    B) \[\frac{n}{n+1}\]

    C) \[\frac{2n}{n-1}\]

    D) \[\frac{2n}{n+1}\]

    Correct Answer: D

    Solution :

    [d] Let the statement P(n) be defined as
    \[P(n):1+\frac{1}{1+2}+\frac{1}{1+2+3}+...\]
    \[+\frac{1}{1+2+3+...+n}=\frac{2n}{n+1}\]
    i.e. \[P(n):1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{2}{n(n+1)}=\frac{2n}{n+1}\]
    Step I: For \[n=1,\]\[P(1):1=\frac{2\times 1}{1+1}=\frac{2}{2}=1,\] which is true.
    Step II: Let it is true for n = k,
    i.e., \[1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{2}{k(k+1)}=\frac{2k}{k+1}\] ..(i)
    Step III: For \[n=k+1,\]
    \[\left( 1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{2}{k(k+1)} \right)+\frac{2}{(k+1)(k+2)}\]
    \[=\frac{2k}{k+1}+\frac{2}{(k+1)(k+2)}\] [Using equation (i)]
    \[=\frac{2k(k+2)+2}{(k+1)(k+2)}=\frac{2\left[ {{k}^{2}}+2k+1 \right]}{(k+1)(k+2)}\]
    [Taking 2 common in numerator part]
    \[=\frac{2{{(k+1)}^{2}}}{(k+1)(k+2)}=\frac{2(k+1)}{k+2}=\frac{2(k+1)}{(k+1)+1}\]
    Therefore, \[P(k+1)\] is true, when P (k) is true, hence, from the principle of mathematical induction, the statement is true for all natural numbers n.


You need to login to perform this action.
You will be redirected in 3 sec spinner