JEE Main & Advanced Mathematics Binomial Theorem and Mathematical Induction Question Bank Self Evaluation Test - Principle of Mathematical Induction

  • question_answer
    Which of the following result is valid?

    A) \[{{(1+x)}^{n}}>(1+nx),\] For all natural numbers n

    B) \[{{(1+x)}^{n}}\ge (1+nx),\] For all natural numbers n, Where \[x>-1\]

    C) \[{{(1+x)}^{n}}\le (1+nx),\] For all natural numbers n

    D) \[{{(1+x)}^{n}}<(1+nx),\] For all natural numbers n

    Correct Answer: B

    Solution :

    [b] Let \[P(n):{{(1+x)}^{n}}\ge (1+nx)\]
    For \[n=1,{{(1+x)}^{1}}=1+x\]
    \[=1+1x\ge 1+1.x{{(1+x)}^{1}}\ge 1+1.x\]
    For \[n=k,\] let \[P(k):{{(1+x)}^{k}}\ge (1+kx)\] is true.
    For \[n=k+1,P(k+1):{{(1+x)}^{k+1}}\ge \{1+(k+1)x\}\]
    is also true.
    We will show \[P(k+1)\] is true.
    Consider \[{{(1+x)}^{k+1}}={{(1+x)}^{k}}(1+x)\ge (1+kx)(1+x)\]                                                      \[[if\,\,x>-1]\]
    \[=1+x+kx+k{{x}^{2}}\ge 1+x+kx\]                                                  \[[\because \,\,\,k>0\,\,and\,\,x>-1]\]
    \[=1+(k+1)x\]
    Thus, \[{{(1+x)}^{k+1}}\ge 1+(k+1)x,\,\,if\,\,x>-1\]


You need to login to perform this action.
You will be redirected in 3 sec spinner