JEE Main & Advanced Mathematics Definite Integration Question Bank Summation of series by Definite Integration, Gamma function, Leibnitz's rule

  • question_answer
    \[\int_{\,0}^{\,\infty }{\,\log \left( x+\frac{1}{x} \right)\frac{dx}{1+{{x}^{2}}}}\] is equal to             [RPET 2000, 02]

    A)                 \[\pi \log 2\]      

    B)                 \[-\pi \log 2\]

    C)                 \[(\pi /2)\log 2\]              

    D)                 \[-(\pi /2)\log 2\]

    Correct Answer: A

    Solution :

                       \[I=\int_{0}^{\infty }{\log \left( x+\frac{1}{x} \right)}\frac{1}{1+{{x}^{2}}}dx\]            Put \[x=\tan \theta \Rightarrow \,\,dx={{\sec }^{2}}\theta \,\,d\theta \]            \[\Rightarrow I=\int_{0}^{\pi /2}{\,\,\,\,\,\log (\tan \theta +\cot \theta })\frac{{{\sec }^{2}}\theta }{{{\sec }^{2}}\theta }\,d\theta \]            Þ \[I=\int_{0}^{\pi /2}{\,\,\,\,\,\log (\tan \theta +\cot \theta })d\theta \]            \[\Rightarrow I=\int_{0}^{\pi /2}{\log \frac{(1+{{\tan }^{2}}\theta )}{\tan \theta }\,d\theta }\]            Þ I \[=2\int_{0}^{\pi /2}{\log \sec \theta \,d\theta -\int_{0}^{\pi /2}{\log \tan \theta }}\,d\theta \]            Þ  I \[=2\int_{0}^{\pi /2}{\log \sec \theta \,\,d\,\theta }\];   \[\left\{ \,\because \int_{0}^{\pi /2}{\log \tan \theta =0} \right\}\]                 \[\Rightarrow \,I=-2\int_{0}^{\pi /2}{\,\,\,\,\,\log \cos \theta \,d\theta }\]            Þ\[I=-2\times \frac{-\pi }{2}\log 2\], \[\left\{ \because \int_{0}^{\pi /2}{\log \cos \theta =-\frac{\pi }{2}\log 2} \right\}\]                                 Þ \[I=\pi \log 2\].


You need to login to perform this action.
You will be redirected in 3 sec spinner