JEE Main & Advanced Mathematics Definite Integration Question Bank Summation of series by Definite Integration, Gamma function, Leibnitz's rule

  • question_answer
    \[\int_{\,0}^{\,\infty }{\frac{x\ln x\,dx}{{{(1+{{x}^{2}})}^{2}}}}\] is equal to                                          [AMU 2000]

    A)                 0             

    B)                 1

    C)                 \[\infty \]           

    D)                 None of these

    Correct Answer: A

    Solution :

                       \[I=\int_{0}^{\infty }{\frac{x\log x}{{{(1+{{x}^{2}})}^{2}}}\,dx}\]            Put \[x=\tan \theta \] Þ  \[dx={{\sec }^{2}}\theta \,d\theta \]            \[\therefore \]I \[=\int_{0}^{\pi /2}{\frac{\tan \theta \,\log \,(\tan \theta )}{{{\sec }^{4}}\theta }}{{\sec }^{2}}\theta \,d\theta \]                 \[=\int_{0}^{\pi /2}{\sin \theta \,\cos \theta \,\log \,(\tan \theta )\,d\theta }\]                 \[=\frac{1}{2}\int_{0}^{\pi /2}{\sin 2\theta \log \,(\,\tan \theta \,)\,d\theta }\]\[=0\],                                                       \[\left\{ \because \int_{0}^{\pi /2}{\sin 2\theta \,\,\log \,\,\tan \theta \,\,d\theta =0} \right\}\].


You need to login to perform this action.
You will be redirected in 3 sec spinner