JEE Main & Advanced Mathematics Definite Integration Question Bank Summation of series by Definite Integration, Gamma function, Leibnitz's rule

  • question_answer
    \[\underset{n\to \infty }{\mathop{\text{lim}\,}}\,\left[ \frac{1}{{{n}^{2}}}{{\sec }^{2}}\frac{1}{{{n}^{2}}}+\frac{2}{{{n}^{2}}}{{\sec }^{2}}\frac{4}{{{n}^{2}}}+.....+\frac{1}{n}{{\sec }^{2}}1 \right]\] equals [AIEEE 2005]

    A)                 \[\tan 1\]            

    B)                 \[\frac{1}{2}\tan 1\]       

    C)                 \[\frac{1}{2}\sec 1\]       

    D)                 \[\frac{1}{2}\text{cosec}1\]

    Correct Answer: B

    Solution :

                       \[\underset{n\to \infty }{\mathop{\lim }}\,\left[ \frac{1}{{{n}^{2}}}{{\sec }^{2}}\frac{1}{{{n}^{2}}}+\frac{2}{{{n}^{2}}}{{\sec }^{2}}\frac{4}{{{n}^{2}}}+\frac{3}{{{n}^{2}}}{{\sec }^{2}}\frac{9}{{{n}^{2}}}+.....+\frac{1}{n}{{\sec }^{2}}1 \right]\]is equal to \[\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{r=1}^{n}{\frac{r}{{{n}^{2}}}{{\sec }^{2}}\frac{{{r}^{2}}}{{{n}^{2}}}}=\underset{n\to \infty }{\mathop{\lim }}\,\frac{1}{n}\sum\limits_{r=1}^{n}{\frac{r}{n}{{\sec }^{2}}\frac{{{r}^{2}}}{{{n}^{2}}}}\]                    Given limit is equal to the value of integral \[\int_{0}^{1}{x{{\sec }^{2}}{{x}^{2}}dx}\]                    =\[\frac{1}{2}\int_{0}^{1}{2x{{\sec }^{2}}{{x}^{2}}dx}=\frac{1}{2}\int_{0}^{1}{{{\sec }^{2}}t\ dt}\],  [Put \[{{x}^{2}}=t\]]                                 \[=\frac{1}{2}[\tan \ t]_{0}^{1}=\frac{1}{2}\tan 1\].


You need to login to perform this action.
You will be redirected in 3 sec spinner