JEE Main & Advanced Mathematics Definite Integration Question Bank Summation of series by Definite Integration, Gamma function, Leibnitz's rule

  • question_answer
    \[\underset{n\to \infty }{\mathop{\lim }}\,\,\left[ \frac{1}{n}+\frac{1}{\sqrt{{{n}^{2}}+n}}+\frac{1}{\sqrt{{{n}^{2}}+2n}}+.....+\frac{1}{\sqrt{{{n}^{2}}+(n-1)n}} \right]\] is equal to            [RPET 2000]

    A)                 \[2+2\sqrt{2}\] 

    B)                 \[2\sqrt{2}-2\]

    C)                 \[2\sqrt{2}\]      

    D)                 2

    Correct Answer: B

    Solution :

               \[y=\underset{n\to \infty }{\mathop{\lim }}\,\,\left[ \frac{1}{n}+\frac{1}{\sqrt{{{n}^{2}}+n}}+....+\frac{1}{\sqrt{{{n}^{2}}+(n-1)n}} \right]\]            Þ  \[y=\underset{n\to \infty }{\mathop{\lim }}\,\,\left[ \frac{1}{n}+\frac{1}{n\sqrt{1+\frac{1}{n}}}+....+\frac{1}{n\sqrt{1+\frac{(n-1)}{n}}} \right]\]            Þ  \[y=\frac{1}{n}\underset{n\to \infty }{\mathop{\lim }}\,\,\left[ 1+\frac{1}{\sqrt{1+\frac{1}{n}}}+....+\frac{1}{\sqrt{1+\frac{(n-1)}{n}}} \right]\]            \[y=\underset{n\to \infty }{\mathop{\lim }}\,\frac{1}{n}\sum\limits_{k=1}^{n}{\frac{1}{\sqrt{1+\frac{(k-1)}{n}}}}\], Put \[\frac{k-1}{n}=x\] and \[\frac{1}{n}=dx\]            Þ  \[y=\underset{n\to \infty }{\mathop{\lim }}\,\int\limits_{0}^{\frac{n-1}{n}}{\frac{dx}{\sqrt{1+x}}}\] \[=\underset{n\to \infty }{\mathop{\lim }}\,2\left[ \sqrt{1+x} \right]_{\,0}^{\,\left( \frac{n-1}{n} \right)}\]            Þ  \[y=2\underset{n\to \infty }{\mathop{\lim }}\,\,\left[ \sqrt{\frac{2n-1}{n}}-1 \right]\] \[=2\underset{n\to \infty }{\mathop{\lim }}\,\sqrt{\frac{2n-1}{n}}-2\]                 Þ  \[y=2\underset{n\to \infty }{\mathop{\lim }}\,\sqrt{2-\frac{1}{n}}-2\]\[=2\sqrt{2}-2\].


You need to login to perform this action.
You will be redirected in 3 sec spinner