JEE Main & Advanced Mathematics Circle and System of Circles Question Bank System of circles

  • question_answer
    The condition of the curves \[a{{x}^{2}}+b{{y}^{2}}=1\]and \[a'{{x}^{2}}+b'{{y}^{2}}=1\]to intersect each other orthogonally, is

    A)            \[\frac{1}{a}-\frac{1}{a'}=\frac{1}{b}-\frac{1}{b'}\]            

    B)            \[\frac{1}{a}+\frac{1}{a'}=\frac{1}{b}+\frac{1}{b'}\]

    C)            \[\frac{1}{a}+\frac{1}{b}=\frac{1}{a'}+\frac{1}{b'}\]        

    D)            None of these

    Correct Answer: A

    Solution :

               Solving for \[{{x}^{2}},\ {{y}^{2}}\];\[\left( \sqrt{\frac{b'-b}{ab'-ba'}}\text{,}\,\text{ }\sqrt{\frac{a'-a}{a'b-b'a}} \right)\] is the intersecting point. Differentiating\[a{{x}^{2}}+b{{y}^{2}}=1\], \[2ax+2by\frac{dy}{dx}=0\]                    \[\Rightarrow {{\left( \frac{dy}{dx} \right)}_{1}}=-\frac{ax}{ay}\] and \[{{\left( \frac{dy}{dx} \right)}_{2}}=-\frac{a'x}{b'y}\]                    and \[{{\left( \frac{dy}{dx} \right)}_{1}}{{\left( \frac{dy}{dx} \right)}_{2}}=-1\]                    \[\Rightarrow \frac{aa'}{bb'}\left( \frac{{{x}^{2}}}{{{y}^{2}}} \right)=-1\]or \[\frac{aa'}{bb'}\left( \frac{b'-b}{a'-a} \right)=1\].                    Hence\[\frac{1}{b}-\frac{1}{b'}=\left( \frac{1}{a}-\frac{1}{a'} \right)\].


You need to login to perform this action.
You will be redirected in 3 sec spinner