SSC Quantitative Aptitude Trigonometry Question Bank Trigonometry (I)

  • question_answer
    If\[=\frac{{{\cos }^{2}}\theta \,(cose{{c}^{2}}\theta +1)}{\text{cose}{{\text{c}}^{\text{2}}}-1}\]\[0{}^\circ <\theta <90{}^\circ \] then tan \[\theta \] equal to

    A) \[\sqrt{\frac{l-2}{1-m}}\]

    B) \[\sqrt{\frac{2-l}{1-m}}\]

    C) \[\sqrt{\frac{l-2}{m-1}}\]

    D) \[\sqrt{\frac{l-1}{2-m}}\]

    Correct Answer: D

    Solution :

    [d] \[l{{\cos }^{2}}\theta +m{{\sin }^{2}}\theta \] \[={{\cos }^{2}}\theta \frac{(cose{{c}^{2}}\theta +1)}{(cose{{c}^{2}}\theta -1)}\] \[=\frac{{{\cos }^{2}}\theta \,(1+si{{n}^{2}}\theta )}{1-\sin }\cdot \frac{{{\sin }^{2}}\theta }{{{\sin }^{2}}\theta }\] \[=\frac{{{\cos }^{2}}\theta \,(1+si{{n}^{2}}\theta )}{{{\cos }^{2}}\theta }=1+{{\sin }^{2}}\theta \] \[={{\cos }^{2}}\theta +{{\sin }^{2}}\theta +{{\sin }^{2}}\theta ={{\cos }^{2}}\theta +2{{\sin }^{2}}\theta \] \[\Rightarrow \]   \[(1-1)co{{s}^{2}}\theta =(2-m)si{{n}^{2}}\theta \] \[\Rightarrow \]   \[{{\tan }^{2}}\theta =\frac{l-1}{2-m}\]\[\therefore \]\[\tan \theta =\sqrt{\frac{l-1}{2-m}}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner