A) 1
B) 2
C) 3
D) 4
Correct Answer: D
Solution :
\[\cos C=\frac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{2ab}\] Now \[\Delta ={{a}^{2}}+{{b}^{2}}-{{c}^{2}}\] Hence \[\cos C=\frac{\Delta }{2ab}\] ?(1) Also \[\Delta =\frac{1}{2}ab\sin C\Rightarrow \,\frac{2\Delta }{\sin C}=ab\] \[\Rightarrow \,\sin C=\frac{2\Delta }{ab}\] \[\therefore \] From (1) and (2), we get \[\tan C=\frac{2\Delta }{ab}.\,\frac{2ab}{\Delta }=4\]You need to login to perform this action.
You will be redirected in
3 sec