A) \[\sqrt{gR}\]
B) \[\sqrt{2gR}\]
C) \[\sqrt{\frac{2gR}{r-R}}\]
D) \[\sqrt{\frac{2gR(r-R)}{r}}\]
Correct Answer: D
Solution :
Using law of conservation of energy, \[-\frac{GMm}{r}=\frac{1}{2}m{{v}^{2}}-\frac{GMM}{R}\] \[=\frac{{{v}^{2}}}{2}\,=\frac{GM}{R}\,-\frac{GM}{r}\] \[=GM\,\left( \frac{r-R}{rR} \right)=gR\left( \frac{r-R}{r} \right)\] \[v=\,\sqrt{\frac{2gR(r-R)}{r}}\]You need to login to perform this action.
You will be redirected in
3 sec