JEE Main & Advanced Sample Paper JEE Main Sample Paper-3

  • question_answer
    If \[\int{\frac{({{x}^{2}}-1)dx}{({{x}^{4}}+3{{x}^{2}}+1){{\tan }^{-1}}\left( \frac{{{x}^{2}}+1}{x} \right)}}=\log |{{\tan }^{-1}}f(x)|+C,\] then

    A)  \[f(x)={{x}^{2}}+1\]                      

    B)  \[f(x)=\frac{{{x}^{2}}+1}{2x}\]

    C)  \[f(x)=\frac{{{x}^{2}}+1}{x}\]    

    D)  \[f(x)=\frac{1}{2}({{x}^{2}}+1)\]

    Correct Answer: C

    Solution :

     \[I=\int_{{}}^{{}}{\frac{({{x}^{2}}-1)dx}{({{x}^{4}}+3{{x}^{2}}+1){{\tan }^{-1}}\left( \frac{{{x}^{2}}+1}{x} \right)}}\]  (Dividing Num. and Den. by x2) \[I=\int_{{}}^{{}}{\frac{\left( 1-\frac{1}{{{x}^{2}}} \right)dx}{\left( {{x}^{2}}+3+\frac{1}{{{x}^{2}}} \right){{\tan }^{-1}}\left( x+\frac{1}{x} \right)}}=\int_{{}}^{{}}{\frac{dt}{\left( {{t}^{2}}+1 \right){{\tan }^{-1}}t}}\]\[\left( \text{where}\,\text{t}=x+\frac{1}{x}\Rightarrow dt=\left( 1-\frac{1}{{{x}^{2}}} \right)dx \right)\] \[=\log |{{\tan }^{-1}}t|+C=\log \left| {{\tan }^{-1}}\left( \frac{{{x}^{2}}+1}{x} \right) \right|+C\] \[\Rightarrow f(x)=\frac{{{x}^{2}}+1}{x}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner