JEE Main & Advanced Sample Paper JEE Main Sample Paper-4

  • question_answer
    In ellipse\[{{E}_{1}}\], the normal at one end of the latus rectum passes through one end of minor axis. In ellipse \[{{E}_{2}}\], the latus rectum subtends a right angle at \[{{E}_{1}},{{E}_{2}}\] respectively, then

    A) \[{{e}_{1}}={{e}_{2}}\]                  

    B) \[{{e}_{1}}>{{e}_{2}}\]

    C) \[{{e}_{1}}<{{e}_{2}}\]                  

    D) \[{{e}_{1}}+{{e}_{2}}=1\]

    Correct Answer: B

    Solution :

    Let\[{{E}_{1}}:\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=1\] Equation of normal at \[\left( a{{e}_{1}},\frac{{{b}^{2}}}{a} \right)\]is\[\frac{{{a}^{2}}x}{a{{e}_{1}}}-\frac{{{b}^{2}}y}{{{b}^{2}}}={{a}^{2}}{{e}^{2}}\]it passes through (a,0), we get \[e_{1}^{4}+e_{1}^{2}-1=0\Rightarrow {{e}_{1}}=\sqrt{\frac{\sqrt{5}-1}{2}};\] Let\[{{E}_{2}}:\frac{{{x}^{2}}}{{{c}^{2}}}+\frac{{{y}^{2}}}{{{d}^{2}}}=1\] Product of slopes of lines joining center of ellipse and ends of latus rectum is -1 \[\frac{{{d}^{2}}}{c.c{{e}_{1}}}.\frac{-{{d}^{2}}}{c.c{{e}_{1}}}=-1\Rightarrow {{d}^{4}}={{c}^{4}}e_{1}^{2}\] \[\Rightarrow \]\[{{d}^{2}}={{c}^{2}}{{e}_{1}}\]\[\Rightarrow \]\[{{c}^{2}}(1-e_{1}^{2})={{c}^{2}}{{e}_{1}}\] we get\[e_{2}^{2}+{{e}_{2}}-1=0\Rightarrow {{e}_{2}}=\frac{\sqrt{5}-1}{2}\] \[\therefore \]\[{{e}_{1}}>{{e}_{2}}\sin ce\sqrt{x}>x\]if \[0<x<1\]


You need to login to perform this action.
You will be redirected in 3 sec spinner