KVPY Sample Paper KVPY Stream-SX Model Paper-12

  • question_answer
    If \[f(x)=g({{x}^{3}})+xh({{x}^{3}})\] is divisible by , then

    A) both \[g(x)\]and \[h(x)\] are divisible by \[(x-1)\]

    B) \[h(x)\] is divisible but \[g(x)\] is not divisible by \[x-1\]

    C) \[g(x)\]is divisible but \[h(x)\] is not divisible by \[x-1\]

    D) None of these

    Correct Answer: A

    Solution :

    \[f(x)=g({{x}^{3}})+xh({{x}^{3}})\]
    Let \[{{f}_{1}}(x)=1+x+{{x}^{2}}\]
    Clearly roots of \[{{f}_{1}}(x)=0\] are \[\omega ,{{\omega }^{2}},\]where \[\omega \]is non-real cube root of unity
    \[\therefore f(\omega )=0,f({{\omega }^{2}})=0\]
    \[\Rightarrow \]\[g({{\omega }^{3}})\omega h({{\omega }^{3}})=0\] and \[g({{\omega }^{6}})+{{\omega }^{2}}h({{\omega }^{6}})=0\]
    \[\Rightarrow \]\[g(1)+\omega h(1)=0\] ? (i)
    \[g(1)+{{\omega }^{2}}h(1)=0\] ? (ii)
    Adding (i) and (ii),  \[2g(1)+h(1)(\omega +{{\omega }^{2}})=0\]
    \[\Rightarrow \]\[h(1)=2g(1)\]
    From (i), \[g(1)+2\omega g(1)=0\]
    \[\Rightarrow g(1)(1+2\omega )=0\]
    \[\Rightarrow g(1)=0\Rightarrow h(1)=0\]
    \[\Rightarrow \]\[g(x)\]and \[h(x)\] are divisible by \[(x-1)\]


You need to login to perform this action.
You will be redirected in 3 sec spinner