KVPY Sample Paper KVPY Stream-SX Model Paper-12

  • question_answer
    Let \[{{S}_{n}}=\sum\limits_{k=1}^{n}{\frac{n}{{{n}^{2}}+kn+{{k}^{2}}}}\] and \[{{T}_{n}}=\sum\limits_{k=0}^{n-1}{\frac{n}{{{n}^{2}}+kn+{{k}^{2}}}}\] \[n=1,2,3,.........Then,\]

    A) \[{{S}_{n}}<\frac{\pi }{3\sqrt{3}}\]

    B) \[{{S}_{n}}>\frac{\pi }{3\sqrt{3}}\]

    C) \[{{T}_{n}}<\frac{\pi }{3\sqrt{3}}\]

    D) \[{{T}_{n}}\ge \frac{\pi }{3\sqrt{3}}\]

    Correct Answer: A

    Solution :

    we have \[{{S}_{n}}=\sum\limits_{k=1}^{n}{\frac{n}{{{n}^{2}}+kn+{{k}^{2}}}}\]
    And \[{{T}_{n}}=\sum\limits_{k=0}^{n-1}{\frac{n}{{{n}^{2}}+kn+{{k}^{2}}};n=1,2,3....}\]
    For \[n=1,\]we get
    \[{{S}_{1}}=\frac{1}{1+1+1}=\frac{1}{3}=0.3\]and \[{{T}_{1}}=\frac{1}{1+0}=1\]
    Also\[\frac{\pi }{3\sqrt{3}}=\frac{\pi \sqrt{3}}{9}=\frac{3.14\times \,1.73}{9}\]\[=0.34\times 1.73=0.58\]
    \[\therefore {{S}_{1}}<\frac{\pi }{3\sqrt{3}}<{{T}_{1}},\]
    \[\therefore {{S}_{n}}<\frac{\pi }{3\sqrt{3}}\,\operatorname{and}\,{{T}_{n}}>\frac{\pi }{3\sqrt{3}}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner