KVPY Sample Paper KVPY Stream-SX Model Paper-12

  • question_answer
    For any \[n\in N\], the value of the expression \[\underset{n-roots}{\mathop{\sqrt{2+\sqrt{2+....+\sqrt{2}}}}}\,\] is

    A) \[2\cos \left( \frac{\pi }{{{2}^{n+1}}} \right)\]

    B) \[2\sin \left( \frac{\pi }{{{2}^{n}}^{+1}} \right)\]

    C) \[\sqrt{2}\cos \left( {{2}^{\operatorname{n}+1}}\pi  \right)\]

    D) none of these

    Correct Answer: A

    Solution :

    Let \[f(n)=\sqrt{2+\sqrt{2+.....+\sqrt{2}}}\] (number of roots is n)
    Then \[f(1)=\sqrt{2}=2\cos \frac{\pi }{4}\] or \[2\sin \frac{\pi }{4}\]
    \[\therefore \] f (1) may be true for [a] as well as for [b] again f(2) \[=\sqrt{2+\sqrt{2}}=2\times \frac{\sqrt{2+\sqrt{2}}}{2}=2\cos \frac{\pi }{4}\]
    \[\therefore \]f (2) is true for [a].
    We check it for any integer.
    Let \[\sqrt{2+\sqrt{2+....\sqrt{2}}}=2\cos \left( \frac{\pi }{{{2}^{\operatorname{k}+1}}} \right)\]for some \[k\ge 1...\left( \operatorname{i} \right)\]
    Now, \[\underset{(k+1)\,terms}{\mathop{\sqrt{2+\sqrt{2+\sqrt{2+....\sqrt{2}}}}}}\,\]\[=\sqrt{2+\underbrace{\sqrt{2+\sqrt{2+.....\sqrt{2}}}}_{k\,\,terms}}\]
    \[=\sqrt{2+2\cos \left( \frac{\pi }{{{2}^{k+1}}} \right)}\]                        [From (i)]
    \[=\sqrt{2\left[ 1+\cos \frac{\pi }{{{2}^{k+1}}} \right]}\]
    \[\sqrt{2.2{{\cos }^{2}}\frac{\pi }{{{2}^{k+2}}}}=2\cos \frac{\pi }{{{2}^{k+2}}}\]
    \[\therefore \]The result is true for \[\operatorname{n}=k+1\].
    Hence, by the principle of mathematical induction \[\sqrt{2+\sqrt{2+....+\sqrt{2}}}=2\cos \left( \frac{\pi }{{{2}^{n+1}}} \right)\] for all \[n\in N\]


You need to login to perform this action.
You will be redirected in 3 sec spinner