KVPY Sample Paper KVPY Stream-SX Model Paper-12

  • question_answer
    If \[a,b\] and \[c\] are distinct positive numbers, then the expression \[(b+c-a)(c+a-b)(a+b-c)-abc\] is

    A) Positive

    B) negative

    C) Non-positive      

    D) non- negative

    Correct Answer: B

    Solution :

    Given that \[a,b,c\]are distinct \[+ve~\]numbers. The expression whose sign is to be checked is\[(b+c-a)(c+a-b)(a+b-c)-abc.\]
    As this expression is symmetric in \[a,b,c\]without loss of generality, we can assume that \[a<b<c.\]
    Then \[c-a=+ve\]and\[c-b=+ve\]
    \[\therefore \]\[b+c-a=+ve\]and \[c+a-b=+ve\]
    But \[a+b-c\]may be + ve or - ve.
    Case I: If \[a+b-c=+\]ve then we can say that \[a,b,c\] are such that sum of any two is greater than the 3rd. consider
    \[x=a+b-c,\] \[y=b+c-a,\] \[z=c+a-b\]
    Then \[x,y,z\] all are \[+ve\]
    And then \[a=\frac{x+z}{2},b=\frac{y+x}{2},c=\frac{z+y}{2}\]
    Now we know that A.M.>G.M. for distinct real numbers
    \[\therefore \frac{x+y}{2}>\sqrt{xy,}\frac{y+z}{2}>\sqrt{yz,}\frac{z+x}{2}>\sqrt{zx}\]
    \[\Rightarrow \]\[\left( \frac{x+y}{2} \right)\left( \frac{y+z}{2} \right)\left( \frac{z+x}{2} \right)>xyz\]
    \[\Rightarrow \]\[abc>(a+b-c)(b+c-a)(c+a-b)\]\[\Rightarrow \]\[(b+c-a)(c+a-b)(a+b-c)-abc<0\]
    Case II: If \[a+b-c=-\operatorname{ve}\,\]then
    \[(b+c-a)(c+a-b)(a+b-c)-abc\]
    \[=(+ve)(+ve)(-ve)-(+ve)\]
    \[=(-ve)-(+ve)=(-ve)\]
    \[\Rightarrow (b+c-a)(c+a-b)(a+b-c)<abc\]
    Hence in either case given expression is -ve.


You need to login to perform this action.
You will be redirected in 3 sec spinner