KVPY Sample Paper KVPY Stream-SX Model Paper-15

  • question_answer
    A perfectly reflecting mirror of mass M mounted on a spring constitutes a spring-mass system of angular frequency Ω such that \[\frac{4\pi M\Omega }{h}\,=\,{{10}^{24}}{{m}^{-2}}\]  with h as h Planck's constant. N photons of wavelength \[\lambda \,=\,8\pi \,\times {{10}^{-6}}\] m strike the mirror simultaneously at normal incidence   such that the mirror gets displaced by 1 \[\mu m.\] If the value  of N is \[x\times {{10}^{12}},\] then the value  of x is ___ [Consider the spring   as massless]

    A) 1

    B) 7

    C) 4

    D) 5

    Correct Answer: A

    Solution :

    \[m{{\text{V}}_{\text{max}}}=\left( \frac{2h}{\lambda } \right)\text{N}\]
    \[m.\omega \text{A}=\frac{2h}{\lambda }\text{N}\]
    \[\text{N}=\frac{m\omega \lambda \Alpha }{2h}\]
    \[\text{N}=\frac{{{10}^{24}}}{4\pi }\times \frac{8\pi \times {{10}^{-6}}}{2}({{10}^{-6}})\]
    \[\text{N}={{10}^{12}}\]
    \[\therefore \]      \[X=1\]


You need to login to perform this action.
You will be redirected in 3 sec spinner