KVPY Sample Paper KVPY Stream-SX Model Paper-15

  • question_answer
    If \[{{\overline{X}}_{1}}\] and \[{{\overline{X}}_{2}}\] are the means of two distributions such that \[{{\overline{X}}_{1}}<{{\overline{X}}_{2}}\] and \[\overline{X}\] is the mean of the combined distribution, then

    A) \[\overline{X}<{{\overline{X}}_{1}}\]   

    B) \[\overline{X}>{{\overline{X}}_{2}}\]

    C) \[\overline{X}=\frac{{{\overline{X}}_{1}}+{{\overline{X}}_{2}}}{2}\]  

    D) \[{{\overline{X}}_{1}}<\overline{X}<{{\overline{X}}_{2}}\]

    Correct Answer: D

    Solution :

    Let \[{{n}_{1}}\] and \[{{n}_{2}}\]be the number of observation in two groups having means \[{{\overline{X}}_{1}}\] and \[{{\overline{X}}_{2}}\] respectively. Then
    \[\overline{X}=\frac{{{n}_{1}}{{\overline{X}}_{1}}+{{n}_{2}}{{\overline{X}}_{2}}}{{{n}_{1}}+{{n}_{2}}}\]
    Now, \[\overline{X}-{{\overline{X}}_{1}}=\frac{{{n}_{1}}{{\overline{X}}_{1}}+{{n}_{2}}{{\overline{X}}_{2}}}{{{n}_{1}}+{{n}_{2}}}-{{\overline{X}}_{1}}\]
    \[\frac{{{n}_{2}}({{\overline{X}}_{2}}+{{\overline{X}}_{1}})}{{{n}_{1}}+{{n}_{2}}}>0\,\,[\,\,\because {{\overline{X}}_{2}}>{{\overline{X}}_{1}}]\]
    \[\Rightarrow \overline{X}>{{\overline{X}}_{1}}\] ??.. (1)
    And, \[\overline{X}-{{\overline{X}}_{2}}=\frac{{{n}_{1}}({{\overline{X}}_{1}}+{{\overline{X}}_{2}})}{{{n}_{1}}+{{n}_{2}}}<0\,\,\,[\,\,\because {{\overline{X}}_{2}}>{{\overline{X}}_{1}}]\]
    \[\Rightarrow \overline{X}<{{\overline{X}}_{1}}\] ??.. (2)
    From (1) and (2) \[\Rightarrow {{\overline{X}}_{1}}<\overline{X}<{{\overline{X}}_{2}}.\]


You need to login to perform this action.
You will be redirected in 3 sec spinner