KVPY Sample Paper KVPY Stream-SX Model Paper-15

  • question_answer
    If the chords of contact of tangents from two points \[(-\,4,\,\,2)\] and (2, 1) to the hyperbola \[\frac{{{x}^{2}}}{{{a}^{2}}}-\frac{{{y}^{2}}}{{{b}^{2}}}=1\] are at right angle, then the eccentricity of the hyperbola is -

    A) \[\frac{\sqrt{7}}{2}\]

    B) \[\sqrt{\frac{5}{3}}\]

    C) \[\sqrt{\frac{3}{2}}\]

    D) \[\sqrt{2}\]

    Correct Answer: C

    Solution :

    Chord of contact w.r.t. \[(-\,4,\,\,2)\] is \[-\frac{4x}{{{a}^{2}}}-\frac{2y}{{{b}^{2}}}=1\]
    Slope \[{{m}_{1}}=\frac{-\,2{{b}^{2}}}{{{a}^{2}}}\]                       ??(1)
    Chord of contact w.r.t. (2, 1) is  \[\frac{2x}{{{a}^{2}}}-\frac{y}{{{b}^{2}}}=1\]
    Slope \[{{m}_{2}}=\frac{-2{{b}^{2}}}{{{a}^{2}}}\]
    \[\therefore {{m}_{1}}{{m}_{2}}=-1\]
    \[\frac{4{{b}^{4}}}{{{a}^{4}}}=1\]
    \[2{{b}^{2}}={{a}^{2}}\]
    \[\Rightarrow 2{{a}^{2}}({{e}^{2}}-1)={{a}^{2}}\] \[\Rightarrow e=\sqrt{\frac{3}{2}}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner