A) 3
B) 2
C) 1
D) none of these
Correct Answer: B
Solution :
Let \[D=\left| \begin{matrix} {{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\ {{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\ {{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\ \end{matrix} \right|\] |
For maximum value we have to assign maximum value to the \[+ve\]term & minimum value to\[-ve\] term which is possible if three elements will become zero of different row & different column. |
\[\therefore i.e.\,\,{{a}_{13}}={{a}_{21}}={{a}_{32}}=0\] & \[{{a}_{11}}={{a}_{32}}={{a}_{33}}={{a}_{12}}\] |
\[\therefore \,\,\,{{D}_{\max }}=2-0=2\] |
You need to login to perform this action.
You will be redirected in
3 sec