KVPY Sample Paper KVPY Stream-SX Model Paper-15

  • question_answer
    If\[f(x)=\int\limits_{1}^{x}{\frac{xf\,(x)+1}{{{x}^{2}}}}\,\,dx\]and\[f(2)=\frac{3}{4},\]then\[f'(1)\] is-

    A) 1

    B) \[\frac{1}{2}\] 

    C) \[-\frac{1}{2}\]

    D) 0

    Correct Answer: A

    Solution :

    \[f(x)=\int\limits_{1}^{x}{\frac{xf\,(x)+1}{{{x}^{2}}}\,\,dx}\]
    \[f'(x)=\frac{xf\,(x)+1}{{{x}^{2}}}=\frac{1}{x}f\,(x)+\frac{1}{{{x}^{2}}}\]
    \[i.e.\,\,f'(x)-\,\frac{1}{x}f\,(x)=\frac{1}{{{x}^{2}}}\]
    Which is linear differential equation on solving it, we get
    \[\therefore \,\,\,\,\frac{1}{x}f(x)=\int{\frac{1}{{{x}^{3}}}dx+c=-\frac{1}{2{{x}^{2}}}+c}\]
    \[i.e.\,\,f\,(x)=-\frac{1}{2}+cx\,\,\,\,\frac{3}{4}=f\,(2)=-\frac{1}{4}+2c\]
    \[\Rightarrow c=\frac{1}{2}\]
    \[f'(x)=\frac{1}{2{{x}^{2}}}+c\]
    \[\therefore f'\,(1)=\frac{1}{2}+\frac{1}{2}=1\]


You need to login to perform this action.
You will be redirected in 3 sec spinner