KVPY Sample Paper KVPY Stream-SX Model Paper-18

  • question_answer
    Let \[z=\cos \theta +i\sin \theta .\]  Then, the value of  \[\sum\limits_{m=1}^{15}{{{I}_{m}}({{z}^{2m\,-1}})}\]  at \[\theta =2{}^\circ \]is

    A) \[\frac{1}{\sin 2{}^\circ }\]

    B) \[\frac{1}{2\sin 2{}^\circ }\]

    C) \[\frac{1}{3\sin 2{}^\circ }\]

    D) \[\frac{1}{4\sin 2{}^\circ }\]

    Correct Answer: D

    Solution :

    We have, \[z=\cos \theta +isin\theta \]
    \[{{z}^{2m-1}}={{(\cos \theta +i\sin \theta )}^{2m-1}}\]
    \[{{z}^{2m-1}}=\cos \,(2m-1)\theta +isin\,(2m-1)\theta \]
    \[{{I}_{m}}({{z}^{2m-1}})=\sum\limits_{m=1}^{15}{\sin \,(2m-1)\theta }\]
    \[\sum\limits_{m=1}^{15}{{{I}_{m}}({{z}^{2m-1}})=\sum\limits_{m=1}^{15}{\sin \,(2m-1)\,\theta }}\]\[=\frac{1}{2\sin \theta }\sum\limits_{m=1}^{15}{2\sin \theta \sin (2m-1)\,\theta }\]
    \[=\frac{1-\cos 30{}^\circ \cdot \theta }{2\sin \theta }\]
    \[=\frac{1-\cos 60{}^\circ }{2\sin 2{}^\circ }\]               \[[\theta =2{}^\circ ]\]
    \[=\frac{1}{4\sin 2{}^\circ }\]


You need to login to perform this action.
You will be redirected in 3 sec spinner