KVPY Sample Paper KVPY Stream-SX Model Paper-20

  • question_answer
     \[\underset{x{{\to }^{-1}}}{\mathop{\lim }}\,\frac{\sqrt{\pi }-\sqrt{2{{\sin }^{-1}}x}}{\sqrt{1-x}}\] is equal to:

    A) \[\frac{1}{\sqrt{2\pi }}\]

    B) \[\sqrt{\frac{2}{x}}\]

    C) \[\sqrt{\frac{\pi }{2}}\]  

    D) \[\sqrt{\pi }\]

    Correct Answer: B

    Solution :

    \[\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,\frac{\sqrt{\pi }-\sqrt{2{{\sin }^{-1}}}}{\sqrt{1-x}}\times \frac{\sqrt{\pi }+\sqrt{2{{\sin }^{-1}}x}}{\sqrt{\pi }+\sqrt{2{{\sin }^{-1}}x}}\]\[=\underset{x{{\to }^{-}}}{\mathop{\lim }}\,\frac{2\left( \frac{\pi }{2}-{{\sin }^{-1}}x \right)}{\sqrt{1-x}\left( \sqrt{\pi }+\sqrt{2{{\sin }^{-1}}}x \right)}\]\[=\underset{x{{\to }^{-}}}{\mathop{\lim }}\,\frac{2{{\cos }^{-1}}x}{\sqrt{1-x}}.\frac{1}{2\sqrt{\pi }}\]
    Assuming \[x=\cos \theta \]
    \[=\underset{\theta \to {{0}^{-}}}{\mathop{\lim }}\,\frac{2\theta }{\sqrt{2}\sin \left( \frac{\theta }{2} \right)}.\frac{1}{2\sqrt{\pi }}=\sqrt{\frac{2}{\pi }.}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner