KVPY Sample Paper KVPY Stream-SX Model Paper-26

  • question_answer
    The value of \[_{n\to \infty }^{\,\,\,\lim }\underset{r=0}{\overset{n}{\mathop{\sum }}}\,\left( \frac{1}{4r+1}-\frac{1}{4r+3} \right)\] is equal to

    A) \[\frac{\pi }{2\sqrt{2}}\]

    B) \[\frac{\pi }{2}\]        

    C) \[\frac{\pi }{4}\]

    D) \[\frac{\pi }{8}\]

    Correct Answer: C

    Solution :

    We have, \[_{n\to \infty }^{\lim }\sum\limits_{r=0}^{n}{\left( \frac{1}{4r+1}-\frac{1}{4r+3} \right)}\]\[=_{n\to \infty }^{\lim }\sum\limits_{r=0}^{n}{\left( \int_{0}^{1}{{{x}^{4r}}-{{x}^{4r+2}}} \right)dx}\]
    \[=\int_{0}^{1}{\left( 1+{{x}^{4}}+{{x}^{8}}+.... \right)-\left( {{x}^{2}}+{{x}^{6}}+{{x}^{10}}... \right)}dx\]
    \[=\int_{0}^{1}{\left( \frac{1}{1-{{x}^{4}}}-\frac{{{x}^{2}}}{1-{{x}^{4}}} \right)dx}\]
    \[=\int_{0}^{1}{\frac{1-{{x}^{2}}}{1-{{x}^{4}}}}dx=\int_{0}^{1}{\frac{dx}{1+{{x}^{2}}}}\]
    \[=\left[ {{\tan }^{-1}}x \right]_{0}^{1}=\frac{\pi }{4}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner