KVPY Sample Paper KVPY Stream-SX Model Paper-4

  • question_answer
    Consider an AC circuit as shown in the figure above. If \[{{R}^{2}}=\frac{L}{C}\] which one of the following statements is correct?            

    A) Impedance is independent of frequency

    B) Impedance is dependent of frequency

    C) Impedance is the resistance only

    D) None of the above

    Correct Answer: C

    Solution :

    [c]
    Here
    (i) Rand L is series wire in wire AB so reactance \[{{\Zeta }_{1}}=R+\operatorname{j}\omega L\]
    (ii) C and R is series wire. So, \[{{\Zeta }_{2}}=R+\frac{1}{\operatorname{j}\omega L}\]
    The equivalent circuit is shown as,
     
    Hence, impedance Z is given as \[\frac{1}{Z}=\frac{1}{{{Z}_{1}}}+\frac{1}{{{Z}_{2}}}\]
    \[=\frac{1}{R+j\omega L}+(R+j\omega C)\]\[=\frac{1+(R+j\omega C)(R+j\omega L)}{R+j\omega L}\]\[=\frac{(1+R-{{\omega }^{2}}CL)+j(\omega CR+\omega LR)}{R+j\omega L}\]
    \[\Rightarrow \]\[Z=\frac{R+j\omega L}{(1+{{R}^{2}}-{{\omega }^{2}}CL)+j\omega L(C+L)}\]\[=\frac{[R+j\omega L][1+{{R}^{2}}-{{\omega }^{2}}CL-j\left( \omega R \right)\left( C+L \right)]}{(1+{{R}^{2}}-{{\omega }^{2}}CL)+{{\omega }^{2}}{{R}^{2}}{{(C+L)}^{2}}}\]
    Hence, the imaginary part of the impedance is gives as \[=\omega L(1+{{R}^{2}}-{{\omega }^{2}}CL)-{{\omega }^{2}}{{R}^{2}}(C+L)\]
    Putting \[{{R}^{2}}=\frac{L}{C}\]we get it zero.


You need to login to perform this action.
You will be redirected in 3 sec spinner