KVPY Sample Paper KVPY Stream-SX Model Paper-5

  • question_answer
    If \[I=\int_{0}^{\pi /2}{{{\cos }^{n}}x{{\sin }^{n}}xdx=\lambda \int_{0}^{\pi /2}{{{\sin }^{n}}xdx,}}\] then \[\lambda \] equals

    A) \[{{2}^{-n+1}}\]                    

    B) \[{{2}^{n+1}}\]

    C) \[{{2}^{-n\,-1}}\]                    

    D) \[{{2}^{-\,n}}\]

    Correct Answer: D

    Solution :

    [d]
    We have, \[I=\int_{0}^{\pi /2}{{{\cos }^{n}}x{{\sin }^{n}}dx}\]
    \[I=\int_{0}^{\pi /2}{\frac{{{(2\sin x\cos x)}^{n}}}{{{2}^{n}}}dx}\]\[\Rightarrow \]\[I=\frac{1}{{{2}^{n}}}\int_{0}^{\pi /2}{{{(\sin 2x)}^{n}}dx}\] \[\left[ \text{put}\,2x=t\Rightarrow dx=\frac{dt}{2} \right]\]
    \[\Rightarrow \]\[I=\frac{1}{{{2}^{n}}}\int_{0}^{\pi }{{{(\sin t)}^{n}}\frac{dt}{2}}\]
    \[\Rightarrow \]\[I=\frac{1}{{{2}^{n+1}}}\int_{0}^{\pi }{{{(\sin t)}^{n}}dt}\]
    \[\Rightarrow \]\[I=\frac{2}{{{2}^{n+1}}}\int_{0}^{\pi /2}{{{\sin }^{n}}tdt}\] \[\left[ \because \int_{0}^{2a}{f(x)dx=2\int_{0}^{a}{f\,(2a-x)dx}} \right]\]
    \[\Rightarrow \]\[I={{2}^{-n}}\int_{0}^{\pi /2}{{{\sin }^{n}}x\,dx}\]
    \[\therefore \]\[\lambda ={{2}^{-n}}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner