KVPY Sample Paper KVPY Stream-SX Model Paper-5

  • question_answer
    A charged particle of specific charge (charge/mass) a is the projected from origin with a velocity \[\vec{u}={{v}_{0}}(\hat{i}+\hat{j})\] in a uniform and constant magnetic field \[\vec{B}={{B}_{0}}\hat{i}.\] The position co-ordinates of the particle at time \[t=\frac{\pi }{{{B}_{0}}\alpha }\] are -

    A) \[\left( \frac{{{v}_{0}}}{2{{B}_{0}}\alpha },\frac{\sqrt{2}{{v}_{0}}}{\alpha {{B}_{0}}},\frac{-{{v}_{0}}}{{{B}_{0}}\alpha } \right)\]

    B) \[\left( -\frac{{{v}_{0}}}{2{{B}_{0}}\alpha },0,0 \right)\]

    C) \[\left( 0,\frac{2{{v}_{0}}}{{{B}_{0}}\alpha },\frac{{{v}_{0}}\pi }{2{{B}_{0}}\alpha } \right)\]

    D) \[\left( \frac{{{v}_{0}}\pi }{{{B}_{0}}\alpha },0,\frac{-2{{v}_{0}}}{{{B}_{0}}\alpha } \right)\]

    Correct Answer: B

    Solution :

    [D] Radio of projection of helix will be \[r=\frac{{{v}_{0}}}{\alpha {{B}_{0}}}\] and time period of projection will be \[T=\frac{2\pi }{\alpha {{B}_{0}}},\] projected circle will be formed on \[y-z\] plane. It will make half circle in time \[t=\frac{\pi }{{{B}_{0}}\alpha }.\] x-coordinate = \[{{v}_{0}}t={{v}_{0}}.\frac{\pi }{{{B}_{0}}\alpha }.\]

You need to login to perform this action.
You will be redirected in 3 sec spinner