KVPY Sample Paper KVPY Stream-SX Model Paper-9

  • question_answer
    From a fixed point \[A\] on the circumference of a circle of radius \[r,\] the perpendicular \[AY\] is let fall on the tangent at \[P.\] the maximum area of the triangle \[APY\]is

    A) \[{{r}^{2}}\]

    B) \[\frac{3\sqrt{3}}{4}{{r}^{2}}\]

    C) \[\frac{3\sqrt{3}}{8}{{r}^{2}}\]

    D) \[\sqrt{3{{r}^{2}}}\]

    Correct Answer: C

    Solution :

    See that figure since,\[OP\bot PY\]
    \[\therefore \angle APY=90{}^\circ -\theta \]
    Where \[OPA=\theta \]
    \[\therefore \angle PAY=\theta \]
    Now in \[\Delta OPA,\]
    \[A{{P}^{2}}={{r}^{2}}+{{r}^{2}}-2r.r\cos (\pi -2\theta )=4{{r}^{2}}{{\cos }^{2}}\theta \]
    \[\therefore AP=2r\cos \theta \]
    \[\Rightarrow PY=AP\sin \theta =r\sin 2\theta \]
    \[and\,AY=AP\cos \theta =2r\,{{\cos }^{2}}\theta \]
    \[\therefore \]Area of \[\Delta APY,\]
    \[\Delta =\frac{1}{2}PY.AY={{r}^{2}}\sin 2\theta {{\cos }^{2}}\theta \]
    \[\frac{d\Delta }{d\theta }={{r}^{2}}\left[ 2\cos 2\theta {{\cos }^{2}}\theta -{{\sin }^{2}}2\theta  \right]=0\]
    \[\Rightarrow \theta =\frac{\pi }{2},\frac{\pi }{6}\]
     \[\because 0\ne \frac{\pi }{2}.\]
    Also \[\Delta \] is maximum at \[\theta =\frac{\pi }{6}\](check)
    \[\therefore {{\Delta }_{\max }}={{r}^{2}}.\frac{\sqrt{3}}{2}{{\left( \frac{\sqrt{3}}{2} \right)}^{2}}=\frac{3\sqrt{3{{r}^{2}}}}{8}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner