12th Class Mathematics Sample Paper Mathematics Sample Paper-12

  • question_answer
    Find the equation of plane determined
    by points \[A(3,\,\,-\,1,\,\,2),\] B(5, 2, 4), \[C(-\,1,\,\,-\,1,\,\,6)\] and hence find the distance between plane and point P(6, 5, 9).
    OR
    Show that the lines
    \[\vec{r}=3\hat{i}+2\hat{j}-4\hat{k}+\lambda (\hat{i}+2\hat{j}+2\hat{k})\] and
    \[\vec{r}=5\hat{i}-2\hat{j}+\mu (3\hat{i}+2\hat{j}+6\hat{k})\] are intersecting.
    Hence, find their point of intersection.

    Answer:

    Given points are \[A\,(3,\,\,-1,\,\,2),\]\[B\,(5,\,\,2,\,\,4)\]and\[C\,(-\,1,\,\,-\,1,\,\,6)\].
    Now, equation of plane passing through A, B and C is
    given by
    \[\Rightarrow \]  
    \[\Rightarrow \]  
    Expanding along \[{{R}_{1}}\]we get
    \[(x-3)\,\,(12-0)-(y+1)\,\,(8+8)+(z-2)\,\,(0+12)=0\]\[\Rightarrow \]    \[12x-36-16y-16+12z-24=0\]
    \[\Rightarrow \]   \[12x-16y+12z=76\]
    \[\Rightarrow \]   \[3x-4y+3z=19\]
    Now, distance of the point (6, 5, 9) from the plane (i) is
    \[d=\left| \frac{3\,(6)-4\,(5)+3\,(9)-19}{\sqrt{{{3}^{2}}+{{4}^{2}}+{{3}^{2}}}} \right|\]
    \[=\left| \frac{18-20+27-19}{\sqrt{9+16+9}} \right|\]
    \[=\left| \frac{6}{\sqrt{34}} \right|\]
    \[=\frac{6}{\sqrt{34}}units\]
    Or
                Consider the lines
                            \[\overrightarrow{r}=3\,\hat{i}+2\,\hat{i}-4\hat{k}+\lambda \,(\hat{i}+2\hat{j}+2\hat{k})\]               ?(i)
                and       \[\overrightarrow{r}=5\,\hat{i}-2\hat{j}+\mu \,(3\,\hat{i}+2\hat{j}+6\hat{k})\]        ?(ii)
                Here,     \[{{\overrightarrow{a}}_{1}}=3\,\hat{i}-2\hat{j}-4k,\,\,{{\overrightarrow{b}}_{1}}=\hat{i}+2\hat{j}+2\hat{k}\]
                and       \[{{\overrightarrow{a}}_{2}}=5\,\hat{i}-2\hat{j},\,\,{{\overrightarrow{b}}_{2}}=3\,\hat{i}+2\hat{j}+6\hat{k}\]
                \[\therefore \]      \[{{\overrightarrow{a}}_{2}}-{{\overrightarrow{a}}_{1}}=5\,\hat{i}-2\hat{j}-3\,\hat{i}-2\hat{j}+4\hat{k}\]
                                        \[=2\hat{i}-4\hat{j}+4\hat{k}\]
                and      
                Consider\[({{\overrightarrow{a}}_{2}}-{{\overrightarrow{a}}_{1}})\cdot ({{\overrightarrow{b}}_{1}}\times {{\overrightarrow{b}}_{2}})=16-16=0\]
                As \[({{\overrightarrow{a}}_{2}}-{{\overrightarrow{a}}_{1}})\cdot ({{\overrightarrow{b}}_{1}}\times {{\overrightarrow{b}}_{2}})=0\]
                \[\Rightarrow \]Lines are intersecting (coplanar and \[{{\overrightarrow{b}}_{1}}\ne {{\overrightarrow{b}}_{2}}\])
    General point on line (i) is
    \[\overrightarrow{r}=(3+\lambda )\,\hat{i}+(2+2\lambda )\hat{j}+(-\,4+2\lambda )\hat{k}\]           ?(iii)
                General point on line (ii) is
                            \[\overrightarrow{r}=(5+3\mu )\,\hat{i}+(-\,2+2\mu )\hat{j}+6\mu \hat{k}\]          ?(iv)
                If Eqs. (iii) and (iv) represent same point
                            \[3+\lambda =5+3\mu \Rightarrow \lambda -3\mu =2\]       ?(v)
                            \[2+2\lambda =-\,2+2\mu \]
                \[\Rightarrow \]               \[2\lambda -2\mu =-\,4\]
    and                   \[-\,4+2\lambda =6\mu \]
                \[\Rightarrow \]               \[2\lambda -6\mu =4\]                ?(vi)
    On solving Eqs. (vi) and (vii), we get
    \[\lambda =-\,4,\]\[\mu =-\,2\]
    On putting the values of \[\lambda \] and \[\mu \] in Eq. (v), we get
    \[-\,4+6=2\]                  [true]
    Hence, for \[\lambda =-\,4,\]\[\mu =-\,2,\]Eqs. (iii) and (iv) represent the same point.
    Position vector of point of intersection is\[\overrightarrow{r}=-\,\hat{i}-6\hat{j}-12\hat{k}\]
    \[\therefore \]Point of intersection is \[(-\,1,\,\,-\,6,\,\,-\,12)\]


You need to login to perform this action.
You will be redirected in 3 sec spinner