12th Class Mathematics Sample Paper Mathematics Sample Paper-4

  • question_answer
    If \[{{x}^{y}}+{{y}^{x}}={{a}^{b}},\] then find \[\frac{dy}{dx}.\]
    OR
    If \[y=\log [x+\sqrt{{{x}^{2}}+{{a}^{2}}}],\] show that \[({{x}^{2}}+{{a}^{2}})\frac{{{d}^{2}}y}{d{{x}^{2}}}+x\frac{dy}{dx}=0.\]

    Answer:

    Given equation is \[{{x}^{y}}+{{y}^{x}}={{a}^{b}}.\]
    Let        \[u={{x}^{y}}\,\,\text{and}\,\,v={{y}^{x}}\]
    So, the given equation becomes
                \[u+v={{a}^{b}}\]
    On differentiating both sides w.r.t. x, we get
                \[\frac{du}{dx}+\frac{dv}{dx}=0\]                                ?(i)
    Now, consider \[u={{x}^{y}}\]
    Taking log on both sides, we get
                \[logu=\log \,{{x}^{y}}\]
    \[\Rightarrow \]   \[\log u=y\log \,x\]              \[[\because \,\,\,log\,{{m}^{n}}=n\,log\,m]\]
    On differentiating both sides w.r.t. x, we get
                \[\frac{1}{u}\cdot \frac{du}{dx}=y\cdot \frac{d}{dx}(\log \,x)+\log \,x\cdot \frac{d}{dx}(y)\]
        [by product rule of derivative]
    \[\Rightarrow \]   \[\frac{1}{u}\cdot \frac{du}{dx}=\frac{y}{x}+\log \,x\frac{dy}{dx}\]
    \[\Rightarrow \]   \[\frac{du}{dx}=u\left( \frac{y}{x}+\log x\frac{dy}{dx} \right)\]
    \[\Rightarrow \]   \[\frac{du}{dx}={{x}^{y}}\left( \frac{y}{x}+\log x\frac{dy}{dx} \right)\]                  \[[\because \,\,\,u={{x}^{y}}]\]
    \[\Rightarrow \]   \[\frac{du}{dx}={{x}^{y-1}}\cdot y+{{x}^{y}}\log x\frac{dy}{dx}\]   ?(ii)  
    and       \[v={{y}^{x}}\] 
    Taking log on both sides, we get
                \[\log \,v=\log {{y}^{x}}\]
    \[\Rightarrow \]   \[\log \,v=x\,\,\log y\]          \[[\because \,\,\,log\,{{m}^{n}}=n\,\log \,m]\]
    On differentiating both sides w.r.t. x, we get
                \[\frac{1}{v}\cdot \frac{dv}{dx}=x\cdot \frac{d}{dx}(\log \,y)+\log \,y\cdot \frac{d}{dx}(x)\]
                                [by product rule of derivative]
    \[\Rightarrow \]   \[\frac{1}{v}\cdot \frac{dv}{dx}=x\cdot \frac{1}{y}\cdot \frac{dy}{dx}+\log \,y\cdot 1\]
    \[\Rightarrow \]   \[\frac{dv}{dx}=v\left( \frac{x}{y}.\frac{dy}{dx}+\log \,y \right)\]
    \[\Rightarrow \]   \[\frac{dv}{dx}={{y}^{x}}\left( \frac{x}{y}.\frac{dy}{dx}+\log \,y \right)\]               \[[\because \,\,\,v={{y}^{x}}]\]
    \[\Rightarrow \]   \[+\text{ }ve\]   ?(iii)
    On putting the values from Eqs. (ii) and (iii) in Eq. (i), we get          
    \[\left( {{x}^{y-1}}\cdot y+{{x}^{y}}\log \,x\frac{dy}{dx} \right)+\left( {{y}^{x-1}}\cdot x\frac{dy}{dx}+{{y}^{x}}\log y \right)=0\]\[\Rightarrow \] \[({{x}^{y}}\log \,x+{{y}^{x-1}}\cdot x)\frac{dy}{dx}=-\,({{y}^{x}}\log \,y+{{x}^{y-1}}\cdot y)\]
    \[\therefore \]                  \[\frac{dy}{dx}=\frac{-\,({{y}^{x}}\log y+{{x}^{y-1}}\cdot y)}{{{x}^{y}}\log x+{{y}^{x-1}}\cdot x}\]
    OR
    Consider, \[y=\log \,[x+\sqrt{{{x}^{2}}+{{a}^{2}}}]\]
    On differentiating both sides w.r.t. x, we get
    \[\frac{dy}{dx}=\frac{1}{x+\sqrt{{{x}^{2}}+{{a}^{2}}}}\times \left[ 1+\frac{1}{2\sqrt{{{x}^{2}}+{{a}^{2}}}}\times 2x \right]\]\[\Rightarrow \]             \[\frac{dy}{dx}=\frac{1}{[x+\sqrt{{{x}^{2}}+{{a}^{2}}}]}\times \left[ \frac{\sqrt{{{x}^{2}}+{{a}^{2}}}+x}{\sqrt{{{x}^{2}}+{{a}^{2}}}} \right]\]\[\Rightarrow \]            \[\frac{dy}{dx}=\frac{1}{\sqrt{{{x}^{2}}+{{a}^{2}}}}={{({{x}^{2}}+{{a}^{2}})}^{-1/2}}\]             ?(i)
    Again, differentiating both sides w.r.t.x, we get
                \[\frac{{{d}^{2}}y}{d{{x}^{2}}}=\frac{-\,1}{2}{{({{x}^{2}}+{{a}^{2}})}^{-3/2}}\times 2x\]
     \[\Rightarrow \]  \[\frac{{{d}^{2}}y}{d{{x}^{2}}}=\frac{-x}{({{x}^{2}}+{{a}^{2}})\sqrt{({{x}^{2}}+{{a}^{2}})}}\]
    \[\Rightarrow \]   \[({{x}^{2}}+{{a}^{2}})\frac{{{d}^{2}}y}{d{{x}^{2}}}=-x\frac{dy}{dx}\]              [using Eq. (i)]
    \[\therefore \] \[({{x}^{2}}+{{a}^{2}})\frac{{{d}^{2}}y}{d{{x}^{2}}}+x\frac{dy}{dx}=0\]             Hence proved


You need to login to perform this action.
You will be redirected in 3 sec spinner