12th Class Mathematics Sample Paper Mathematics Sample Paper-4

  • question_answer
                   
    Show that \[\Delta ABC\] is an isosceles triangle, if the determinant
    OR
    If \[A+B+C=\pi ,\] show that
    \[=-\sin (A-B)\sin (B-C)\sin (C-A)\]

    Answer:

    We have,
    Applying \[{{C}_{1}}\to {{C}_{1}}-{{C}_{3}}\] and \[{{C}_{2}}\to {{C}_{2}}-{{C}_{3}},\] we get
    Taking \[(\cos A-\cos C)\]common from \[{{C}_{1}}\] and \[(\cos B-\cos C)\] common from \[{{C}_{2}},\] we get
    \[(\cos A-\cos C)\cdot (\cos B-\cos C)\]
    \[\left. \begin{align}   & 1 \\  & 1+\cos C \\  & {{\cos }^{2}}C+\cos C \\ \end{align} \right]=0\]
    \[\Rightarrow \,\,\,\,(\cos A-\cos C)\cdot (\cos B-\cos C)\]
    \[[(\cos B+\cos C+1)-(\cos A+\cos C+1)]=0\]
                                        [Expanding along \[{{R}_{1}}\]]
    \[\Rightarrow \,\,\,\,\,(\cos A-\cos C)\cdot (\cos B-\cos C)\]
    \[(\cos B+\cos C+1-\cos A-\cos C-1)=0\]
    \[\Rightarrow \,\,(\cos A-\cos C)\cdot (\cos B-\cos C)(\cos B-\cos A)=0\]\[\Rightarrow \] \[\cos A=\cos C\,\,\text{or}\,\,\cos B=\cos C\,\,\text{or}\,\,\cos B\]
                                                     \[=\cos A\]
    \[\Rightarrow \,\,\,\,A=C\text{ or }B=C\text{ or }B=A\]
    Hence, ABC is an isosceles triangle.
     Hence proved.
    OR
    The given determinant
                                               \[[{{C}_{1}}\to {{C}_{1}}+{{C}_{3}}]\]
                                       
    [taking \[2sin(A-B)\] and \[2sin(A\,-C)\] common from \[{{R}_{2}}\] and \[{{R}_{3}}\]respectively]
                          \[[\because \,\,\,A+B+C=\pi ]\]
    \[=\sin (A-B)\sin (A-C)[\sin B\cos C-\cos B\sin C]\]
    \[=\sin (A-B)\sin (A-C)\sin (B-C)\]
    \[=-\sin (A-B)\sin (B-C)\sin (C-A)\]


You need to login to perform this action.
You will be redirected in 3 sec spinner