JEE Main & Advanced AIEEE Solved Paper-2002

  • question_answer
    \[\underset{x\to 0}{\mathop{\lim }}\,\frac{\sqrt{1-\cos 2x}}{\sqrt{2}x}\] is   AIEEE  Solved  Paper-2002

    A) \[\lambda \]

    B)                                           \[-1\]                       

    C)           zero                         

    D)           does not exist

    Correct Answer: D

    Solution :

    Limit of a function exists only, if LHL = RHL \[\underset{x\to 0}{\mathop{\lim }}\,\frac{\sqrt{1-\cos 2x}}{\sqrt{2}x}=\underset{x\to 0}{\mathop{\lim }}\,\frac{\sqrt{2.{{\sin }^{2}}x}}{\sqrt{2}x}\]                    \[=\underset{x\to 0}{\mathop{\lim }}\,\frac{\sqrt{2}\left| \sin x \right|}{\sqrt{2}x}=\underset{x\to 0}{\mathop{\lim }}\,\frac{\left| \sin x \right|}{x}\] Let       \[f(x)=\frac{\left| \sin x \right|}{x}\] Now,        LHL= \[\underset{h\to 0}{\mathop{\lim }}\,\frac{\left| \sin (0-h) \right|}{0-h}\]                    \[=\underset{h\to 0}{\mathop{\lim }}\,\frac{\sin \,h}{-h}=-1\] and            RHL = \[=\underset{h\to 0}{\mathop{\lim }}\,\frac{\left| \sin \,(0+h) \right|}{0+h}\]                    \[=\underset{h\to 0}{\mathop{\lim }}\,\frac{\sin \,h}{-h}=1\]              \[\Rightarrow \]   LHL \[\ne \] RHL \[\therefore \,\,\underset{x\to 0}{\mathop{\lim }}\,\frac{\left| \sin x \right|}{x}\] does not exist.


You need to login to perform this action.
You will be redirected in 3 sec spinner