JEE Main & Advanced AIEEE Solved Paper-2003

  • question_answer
    If z and \[\omega \] are two non-zero complex numbers  such  that  \[\left| z\,\omega  \right|=1\] and arg (z) - arg \[(\omega )=\frac{\pi }{2}\], then \[\overline{z}\omega \] is equal to     AIEEE  Solved  Paper-2003    

    A)                         1                             

    B) -1           

    C) \[i\]                                       

    D) \[-i\]

    Correct Answer: D

    Solution :

    Let \[z={{r}_{1}}{{e}^{i\theta }}\] and \[\omega ={{r}_{2}}{{e}^{i\phi }}\] \[\Rightarrow \]   \[\overline{z}={{r}_{1}}\,{{e}^{-i\,\theta }}\] Given,       \[\left| z\omega  \right|=1\Rightarrow \left| {{r}_{1}}{{e}^{i\theta }}.\,\,{{r}_{2}}\,{{e}^{i\,\phi }} \right|=1\] \[\Rightarrow \]   \[{{r}_{1}}{{r}_{2}}=1\]                                                  ... (i) and            arg \[(z)=\arg \,(\omega )=\frac{\pi }{2}\] \[\Rightarrow \]   \[\theta -\phi =\frac{\pi }{2}\]                                    ... (ii) Then, \[\overline{z}\,\omega ={{r}_{1}}{{e}^{-i\,\theta }}.\,{{r}_{2}}{{e}^{i\,\theta }}={{r}_{1}}{{r}_{2}}{{e}^{-i\,(\theta -\phi )}}\] From Eqs. (i) and (ii), we get                                 \[\overline{z}\,\omega =1.\,{{e}^{-i\pi /2}}=\cos \frac{\pi }{2}-i\sin \frac{\pi }{2}\]             \[\Rightarrow \]   \[\overline{z}\,\omega =-i\]      


You need to login to perform this action.
You will be redirected in 3 sec spinner